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1 Introduction

The broad objective of the proposed project is to investigate, develop, and evaluate computa-
tionally efficient [1] and statistically optimal [2-4] algorithms for accurate image reconstruc-
tion in three-dimensional (3D) Ultrasonic diffraction tomography (UDT) imaging of the breast
cancer. UDT [5-7] can be viewed as a generalization of X-ray tomography where X-rays have
been replaced with an acoustical wavefield. Because UDT is non-invasive, free of radiation
hazard, and reproducible, it is potentially an excellent tool for imaging of breast cancer [8,9].
While UDT promises several potentially important advantages over conventional ultrasonic
imaging and has found important uses in a wide variety of engineering and scientific disci-
plines, its application to imaging of breast cancer still remains largely unexplored. In the past
two years, our research on this project has been supported by a Concept Award of the US
Army Medical Research adn Material Command, and we believe that our research has been
successful and productive. The report below summarizes our research activities and results on

the project to date.

2 Body

Our research activities on the project to date can be grouped naturally into 4 categories. The
first was the investigation of efficient linear algorithms for image reconstruction from 3D data
and from minimum scan data. The second was the development of efficient nonlinear algo-
rithms for 2D and 3D image reconstructions. The third was the applications of the developed
algorithms to simulated and experimental data for evaluation of their performance. Finally,
as a by product, we developed short-scan reconstruction algorithms for reflection-mode ultra-
sound tomography that can also be a potentially important modality for imaging of the breast

cancer.

2.1 Development of efficient linear reconstruction algorithms

In breast imaging applications of ultrasound, the first-order Born or Rytov approximations
are typically not valid, and consequently, a linearized Helmholtz equation may not accu-

rately describe the relationship between the measured scattered wavefield and the scattering




tissue [10—18]. However, many nonlinear reconstruction algorithms that account for multiple-
scattering effects, including the ones we discuss below [19], involve the recursive application
of a linear reconstruction algorithm (that assumes the validity of the first-order Born or Rytov
.approximation.) It is therefore very important to develop computational efficient and numer-

ically robust linear reconstruction algorithms for DT. Below, we discuss our results on this

salient topic.

2.1.1 Development of 3D efficient reconstruction algorithms

In 2D DT, the filtered backpropagation (FBPP) algorithm is [5] widely used for image recon-
struction and is generally regarded as being more accurate than direct Fourier reconstruction
approaches. However, objects such as the female breast are inherently three-dimensional and
must be reconstructed using fully 3D reconstruction algorithms in order to avoid significant
artifacts and a loss of quantitative accuracy. We developed and evaluated novel reconstruc-
tion algorithms for 3D DT, referred to as the esstimation-combination (E-C) reconstruction
algorithms, that effectively solve the (fully) 3D DT reconstruction problem by performing a
series of 2D Radon transform inversions [20]. This greatly reduces the large computational
load that is generally required by any other 3D DT reconstruction technique such as the 3D
FBPP algorithm. This is vitally important for the development of computationally tractable
3D nonlinear algorithms that involve the recursive application of a 3D linear reconstruction
algorithm. We also demonstrated that, in the presence of data noise, there is redundant infor-
mation contained in the 3D DT data function that can be exploited by the 3D E-C algorithms

to reduce the variance of the reconstructed image [19].

2.1.2 Development of minimum-scan reconstruction algorithms

In many applications of tomographic imaging it is desirable to minimize the angular range
over which the measurement data are acquired. This reduces the time necessary to collect
the measurement data, which can reduce artifacts due to patient motion. Furthermore, in cer-
tain situations it may not be experimentally possible to collect data over a complete 27 range.
We demonstrated that a minimal-scan data set acquired using view angles only in [0, $min]
contains all the information necessary to reconstruct exactly a 2D scattering object function,

where 7 < @min < 37/2 is a function of the measurement geometry. Based on this ob-




servation, we developed, investigated, and numerically implemented minimal-scan FBPP and
E-C reconstruction algorithms for 2D DT that can exactly reconstruct the scattering object
function from the minimal scan data set. Prior to our work, all reconstruction algorithms
for DT required a full 2w worth of angular measurements 10 reconstruct an accurate image.
We numerically demonstrated that the minimal-scan E-C reconstruction algorithms were less
susceptible to the effects of data noise and inconsistencies than were the minimal-scan FBPP
reconstruction algorithms. We also generalized this work to 2D DT using the fan-beam geom-
etry and revealed a novel relationship between the maximum scanning angle and achievable
image resolution. This work may provide useful insights into the development of minimum-

scan reconstruction algorithms for 3D DT that can be used for breast imaging [21].

2.2 Development of efficient nonlinear reconstruction algorithms

In certain situations of the breast imaging, the first-order Born or Rytov approximations may
not be valid. Consequently, a linearized Helmholtz equation may not accurately describe the
relationship between the measured scattered wavefield and the scattering object, and nonlinear
algorithms are necessary for obtaining accurate images. We proposed to develop efficient

nonlinear reconstruction algorithms for UDT.

2.2.1 Development of 2D efficient nonlinear reconstruction algorithms

Previously we described our development and investigation of E-C reconstruétion algorithms
for linear DT. We have generalized these algorithms to the case where a forward scattering
model includes multiple-scattering effects. Two forward scattering models were utilized that
captured higher-order terms in the Born or Rytov perturbation series, and are therefore po-
tentially useful for modeling ultrasound wave propagation in breast tissue [22,23]. For each
of the two forward scattering models, we developed families of nonlinear E-C reconstruction
algorithms to solve the inverse problem [19]. The nonlinear E-C reconstruction algorithms
operate by relating, in 2D Fourier space of the Radon transform, the n-th order perturbation
of the measured data function to the n-th order perturbation of the scattering object function.
The algorithms are recursive in the sense that calculation of the n-th order perturbation of

the object function requires knowledge of the (n-l)—th order perturbation. The computational




efficiency of the E-C algorithms is therefore very relevant to this problem. We also identi-
fied consistency conditions for the nonlinear imaging models employed by the two families of

nonlinear E-C algorithms. For both imaging models, the consistency conditions for linear DT

were contained as special cases.

2.2.2 Development of 3D efficient nonlinear reconstruction algorithms

Although we have been largely successful in the theoretical development of compuiationally
efficient nonlinear algorithmsvfor 2D UDT, the applicability of such algorithms can be re-
strictive because the multi-scattering effect in the breast imaging is generally 3D in nature.
Therefore, we have also investigated 3D nonlinear reconstruction algorithms. Our strategy for
the development of 3D nonlinear reconstruction algorithms is similar to that for 2D nonlinear
reconstruction discussed above. Specifically, we proposed to investigate the two mentioned
forward models in 3D and to use the perturbation series for the inversion. The inversion of
the solution at each perturbative order will be accomplished through the use of our developed
linear 3D E-C algorithms for improving the computational efficiency. We have also made

progress on the development of such 3D perturbative nonlinear algorithms.

2.3 Implementation and evaluation of the proposed algorithms

We have implemented the proposed linear algorithms and nonlinear algorithms and evaluated

them by use of computer simulated data and real data.

2.3.1 Implementation and evaluation of linear reconstruction algorithms

We have implemented the linear E-C reconstruction algorithms and investigated their noise
properties by using a large number of computer simulated data sets. Through our simula-
tion studies, we have demonstrated that it is possible to achieve a bias-free reduction of the
statistical variation in the reconstructed object function by utilizing complementary statistical
information inherent in the scattered data. (The use of an explicit smoothing operation gen-
erally introduces bias in the reconstructed scattering object function.) We have quantitatively
demonstrated that the E-C algorithms are less susceptible to data noise and other finite sam-
pling effects than are the corresponding FBPP algorithms. This result is consistent with the

observation that the FBPP algorithms involve more complicated numerical operations (e.g.,




backpropagation) than do the E-C algorithms, which may amplify the propagation of noise
and errors into the reconstructed image. Using simulated strongly scattering data, we have
demonstrated that the E-C algorithms are less susceptible to modeling errors due to viola-

tion of first-order scattering approximations. These same results have been verified for the

minimum-scan DT problem.

2.3.2 Implementation and evaluation of nonlinear reconstruction algorithms

Using simulated strongly scattering data, we have started to numerically investigate nonlinear
reconstruction algorithms for 2D DT. As described in Section 2.2.1, our nonlinear reconstruc-
tion algorithms utilize a forward scattering operator that assumes the validity of a higher-order
Born or Rytov terms. An accurate numerical implementation of the forward scattering oper-
ator is critical for obtaining accurate reconstructions using our algorithms. In a preliminary
study, we have encountered difficulty in achieving an accurate numerical implementation of
this operator. The forward scattering models employed by our families of nonlinear algo-
rithms involve an integration over a complex frequency variable, which is not computable
in practice. Accordingly, numerical inaccuracies were introduced by truncating the limits of
integration, which we observed to introduce a severe degradation in the reconstructed image
quality. Compensation for such image degradations is a challenging task, and we are still
investigating methods for efficiently and adequately mitigating the effects of the integration

truncation used by the forward scattering operator.

2.4 Development and evaluation of reconstruction algorithms for reflec-
tivity tomography

Reflectivity tomography has been applied to numerous biomedical and non-destructive test
imaging problems [24-27]. It has a strong relationship to UDT and can be a potential useful
technique for imaging the breast cancer. The task in reflectivity tomography is to reconstruct
from the measured data a function describing the refiectivity distribution within the breast.
It has been generally considered that accurate images can be reconstructed only from full
scan data over 2. Recently, we have investigated and evaluated image reconstruction from
minimum-scan data in reflectivity tomography. Using the so-called potato-peeler perspective

that we developed, we showed that accurate images can be reconstructed from minimum-scan
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data in reflectivity tomography. We also performed quantitative studies by use of computer
simulated data, and the results in such studies validated our theoretical results for image recon-
struction in minimum-scan reflectivity tomography. One of our papers on 2D reflectivity to-
mography is to be published in the July issue of JEEE Transactions on Image Processing [28].
Furthermore, we have generalized our results to 3D reflectivity tomography, and our paper

on this topic has been accepted for presentation by the notoriously competitive international

conferences on 3D image reconstruction [29].

3 Key research accomplishments

e We have developed and evaluated computationally efficient 3D linear reconstruction

algorithms that are more than 100 times faster than the conventional 3D FBPP algorithm.

e We have investigated, developed, and evaluated algorithms for image reconstruction

from minimum-scan data in UDT with plane wave sources.

e We have investigated, developed, and evaluated algorithms for image reconstruction

from full-scan and minimum-scan data in UDT with fan-beam wave sources.

e We have developed and evaluated computationally efficient 3D linear reconstruction

algorithms for UDT with spherical wave sources.

e We have developed computationally efficient 2D nonlinear reconstruction algorithms

for UDT with plane wave sources.

o We have investigated theoretically the development of computationally efficient nonlin-

ear reconstruction algorithms for 3D UDT.

e We have developed computer codes that implement the proposed linear and nonlinear

reconstruction algorithms.

e We have evaluated the developed linear and nonlinear reconstruction algorithms by use

of computer simulated and experimental data.

e We have developed and evaluated reconstruction algorithms for 2D short-scan reflectiv-

ity tomography.




e We have developed and evaluated reconstruction algorithms for 3D short-scan reflectiv-

ity tomography.

4 Reportable outcomes

10 papers and 3 conference abstracts were published as listed in Section 6. Bibliography

below.

5 Bibliography of all Publications
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2. X. Pan and M. Anastasio: On a limited-view reconstruction problem in wavefield to-

mography, IEEE Trans. Med. Imaging., 21, 413-416, 2002.

3. M. Anastasio and X. Pan: Numerically robust minimal-scan reconstruction algorithms
for diffraction tomography via Radon transform inversion, Int. J. Imag. Sys. Tech., 12,

84-91, 2002.

4. M. Anastasio and X. Pan: An improved reconstruction algorithm for 3D diffraction
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data, CD Proc. of International Symposium on Biomedical Imaging, Washington D. C.,
2002.
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Ph.D. Thesis

1. M. Anastasio: Development and analysis of image reconstruction algorithms in diffrac-

tion tomography, The University of Chicago, 2001.

Peer-Reviewed Proceedings Articles:

1. X. Pan and M. Anastasio: Minimal-scan reconstruction algorithms for fan-beam diffrac-
tion tomography and their analogy to halfscan fan-beam CT, IEEE Medical Imaging
Conference Record (CD), 2001.

2. M. Anastasio and X. Pan: Development and evaluation of minimal-scan reconstruction

algorithms for diffraction tomography, Proc. SPIE, 1322, 860-866, 2001.

3. X. Pan, Y. Zou, and M. Anastasio: Image reconstruction from reduced-scan data in

ultrasonic reflectivity tomography, Proc. SPIE, (in press), 2003.
Abstracts and Presentations

1. X. Pan and M. Anastasio: Reconstruction algorithms in diffraction tomography, Ad-
vanced Light Source, Lawrence Berkeley National Laboratory, California, (Host: Dr.

Malcolm Howells), October 29, 2001.

2. M. Anastasio, Y. Zou, and X. Pan: Reflectivity tomography using temporally truncated
data, The 2nd Joint Meeting of the IEEE Engineering in Medicine and Biology Society
and Biomedical Engineering Society, Houston, 2002.

3. Y. Zou, M. Anastasio, and X. Pan: Data truncation and the exterior problemin reflection-

mode tomography, IEEE Medical Imaging Conference, Norfolk, 2002.

6 Conclusion

Ultrasonic diffraction tomography is a potentially important technique for imaging of the
breast cancer. In this project, we have investigated, developed, and evaluated computation-

ally efficient and statistically optimal algorithms for accurate reconstruction of UDT images
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that may find applications in UDT imaging of breast cancer. In the past two years, we have
made contributions to UDT research, as summarized above. Our research on UDT have ad-
dressed numerous scientific and engineering problems involved in UDT image reconstruction.

These results are necessary in making UDT a viable medical imaging technique for imaging

breast cancer.
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Reduced-Scan Image Reconstruction in 3D
Reflectivity Tomography

Xiaochuan Pan, Yu Zou, Mark A. Anastasio! and Emil Y. Sidky
Department of Radiology
The University of Chicago, Chicago, IL 60637
1 Department of Biomedical Engineering
Nlinois Institute of Technology, Chicago, IL 60616

I. INTRODUCTION

Because of its great potential in biomedical imaging, re-
flectivity tomography using ultrasound sources has been
widely studied since the late 1970s [1-4]. Recently there
has been a renewed interest in reflectivity tomography due
to the similarity of its mathematical structure to that of de-
veloping imaging modalities such as thermoacoustic com-
puted tomography (CT) [5]. In three-dimensional (3D) re-
flectivity tomography, a weakly reflecting object, immersed
in an acoustically homogeneous background medium, is il-
luminated with short ultrasonic pulses that are located at
different positions on a spherical surface, enclosing the ob-
ject, and the concomitant reflected signals are measured as
functions of time at each of the multiple source locations.
The task in 3D reflectivity tomography is to reconstruct
from such measured data a function describing the reflec-
tivity distribution within the scattering object'. Under
certain physical conditions, the 3D reflectivity tomogra-
phy reconstruction problem is tantamount to the problem
of reconstructing a 3D function from knowledge of its in-
tegrals over sets of spherical surfaces with varying radii
that are centered at the source-receiver locations; i.e., a
.generalized 3D Radon transform inversion problem.

In their seminal paper, Norton and Linzer [2] derived
an explicit and exact inversion formula for reconstruct-
ing the object function from data acquired at all source-
receiver locations on the measurement sphere. We refer to
such an imaging configuration that utilizes 47 steradians
worth of measurements as a full-scan geometry. In many
medical imaging applications it is not feasible to collect
a complete data set using the full-scan geometry. In this
situation, we have a reduced-scan measurement geometry
and an associated limited-angle tomographic reconstruc-
tion problem. When imaging the female breast, for ex-
ample, only reduced-scan measurements acquired over a
hemisphere can be obtained readily.

In other tomographic imaging modalities including fan-
beam computed tomography (CT) [6] and single-photon
emission computed tomography (SPECT) [7], it has been
shown that one can accurately reconstruct images from
data acquired with reduced-scan configurations. However,
the exact inversion formula of Norton and Linzer [2] cannot

1 For simplicity, we refer to the object’s reflectivity function as the
object function.

reconstruct, in general, accurate images from reduced-scan
data. A reduced-scan reconstruction problem for 3D re-
flectivity tomography has been investigated in [8]. In that
work, which was based on the paraxial approximation, ap-
proximate reconstruction algorithms were proposed that
assumed full-scan or reduced-scan measurement geome-
tries. Their results suggested that the hemisphere reduced-
scan geometry could yield approximation reconstructions
that were comparable in quality to the approximate recon-
structions yielded by the full-scan geometry. However, it '
remains unclear whether an object function can be ezactly
determined from certain reduced-scan data sets in 3D re-
flectivity tomography.

In this work, we investigate the problem of reconstruct-
ing an exact image from reduced-scan data in 3D reflec-
tivity tomography. A potato-peeler perspective, which is
conceptually similar to “layer-stripping” methods, is pro-
posed for identifying data symmetries in 3D reflectivity
tomography. Using the identified data symmetries, we
heuristically demonstrate that, under certain conditions,
data acquired with reduced-scan configurations in reflec-
tivity tomography are sufficient to completely specify the
object function. It is interesting to note that our observa-
tions regarding the stability of the reduced-scan reflectivity
tomography reconstruction problem can be related readily
to a similar analysis of the limited-view thermoacoustic CT
problem [9].

II. DATA FUNCTION IN 3D REFLECTIVITY
TOMOGRAPHY

Consider an acoustic medium that contains a compactly
supported region R, residing completely inside a sphere of
radius Ry centered at the origin. The region R is charac-
terized by an inhomogeneous compressibility () and den-
sity p(7). Outside of R, the background medium has no
absorption and homogeneous compressibility ko and den-
sity po. This implies a constant speed of sound in the
background medium that is denoted by co. The reflectiv-
ity function of the medium is defined as

F(7) = () = (), (1)
where
wd={ % | Igr )
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Consider a (measurement) sphere, which has a radius
Ry and is centered at the origin, that encloses the acous-
tical inhomogeneity, i.e, the region R. Let 7o € Qo
where )y denotes the set of vectors that reside on the
surface of the measurement sphere. The vector com-
ponents of 7 in spherical coordinates are indicated by
(8o, ¢o, Ro). At time t = 0, an omni-directional acoustic
point source with time dependence p(f) located at posi-
tion 7 emits a spherical pulse ¥;n.(7; ) into the region R,
where f = c,t. As the spherically-diverging pulse propa-
gates into the inhomogeneous region R, echos will be pro-
duced that propagate back to the source location. These
echos, which physically represent fluctuations in acoustic
pressure, are functions of time and will be denoted by the
function ¥(7o; ) = ¥r(fo; ) — Wine(Fo; ), Where ¥r(o;?)
and inc(70; f) represent the total and incident wavefields,
respectively. Because ¥r(7o;?) is directly measured and
Yinc(7o; T) is known, 9(75; %) can be interpreted as a mea-
surable quantity.

In order to define conveniently the relationship between
f(7) and the measured echo signal 9(7%;t), we introduce
the temporal Fourier transform pairs

3)

5= [ " o e, (@)

and

(o k) = / ” W(7o,F) e~k dE, (5)

where p and 1 denote the Fourier transformed quantities.

Furthermore, it is useful to define the intermediate quan-

tity
i ey o 4| §16m0(F0; k/2)
¢1(7'07k) = EE { kzﬁ(k/2) ] ’ (6)

and let 9, (7o;f) denote its inverse Fourier transform. As
derived in [2], the mathematical relationship between f(7)
and the measured echo signal 1(7, ) is given by

oGuid = [ FFIESE-F-RD, ()
where the modified data function is g(7o; ) = 281 (7o; 1)
Notice that g(7%;) is equal to integrals of f(7) calculated
over concentric spherical surfaces with radii f that are cen-
tered at the source-receiver location 7. The goal of (con-
ventional full-scan) 3D reflectivity tomography is to utilize
knowledge of g(7o;1) for 7y € Qg and f € [0, Ro+ Ry] to de-
termine f(7) by inverting the generalized Radon transform
given in Eq. (7).

III. FULL-SCAN INVERSION FORMULA

Let 7 = (8, ¢,7) denote a point inside the measurement
sphere and, as before, let 7 = (8o, ¢0,70) € o reside
on the measurement surface. The unit vectors 7 and i

describe the directions of ¥ and 7, respectively. For a
full-scan geometry where g(7; ) is completely specified for
7o € Qo and £ € [0, Ry + Ry}, Norton and Linzer [2] derived
an exact explicit inversion formula given by

= 9 /m dk 1 (Fo; K)K (r, ks 7 - 7o), (8)

where
ik & @ k) o
K(r, k;fi - fig) = @2n)? ; A (kro) P, (7 - 7). (9)

In Eq. (8), jn("), A1) () and P,(-) are the n-th order spher-
ical Bessel, Hankel and Legendre polynomial functions, re-
spectively. )

Due to the infinite summation, the numerical implemen-
tation of Eq. (8) is computationally demanding. In [2], the
following approximate inversion formula for determining
f(7) was also proposed:

fo = a0 /Q % Y 27—l  (10)

where aq is a constant. Equation 10 describes a simple
backprojection of the echo data 1 over the spherical sur-
faces from which the echos originated, summed over all of
the source-receiver locations in {y (the surface of the mea-
surement sphere). It was demonstrated [2] that Eq. (10)
closely approximates the exact inversion formula given in
Eq. (8). This result was explained by revealing that the
scattering process itself inherently provides the correct fil-
tering of the measurement data prior to application of the
backprojection operation in Eq. (10).

1V. THE POTATO-PEELER PERSPECTIVE AND
REDUCED-SCAN IN 3D REFLECTIVITY
TOMOGRAPHY

The data function in Eq. (7) does not have an obvious
symmetry such as that of the Radon transform, where mea-
surements at conjugate views are mathematically equal.
But if we assume that the object function has compact
support, then we can apply the potato peeler perspective
for revealing redundant information in tomographic data
functions. The potato peeler perspective has been applied
both heuristically {10,11] and mathematically [12,13} to
show that half-detector [13] and m-scheme [10] (a gener-
alization of the 180° short-scan) data contain enough in-
formation to uniquely determine the object function. The
same perspective has also shown the data redundancy in
SPECT when the effect of distant dependent spatial reso-
lution is included [11]. The potato peeler perspective has
already been applied to 2D reflectivity tomography [14].
We review the argument for redundant information in 2D
reflectivity tomography and then move on to show that
data covering views over 27 steradians are sufficient to de-
termine the object function in 3D reflectivity tomography.
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Fig. 1. Schematic of data function (top) and two-dimensional object
function (bottom) for the heuristic potato peeler perspective. Points
A, B, and C lie on the outermost ring of the object support, and their
loci in the data space are also shown. The illustrated integration arcs
from opposing views ¢ g and ¢p + 7 intersect the support disk at B.
When the outermost ring along with points A, B and C are removed,
D becomes a point on the outermost edge.

A. 2D reflectivity tomography

In analogy with the 3D case, the source position is spec-
ified by a 2D vector in polar coordinates, 7o(¢o, Ro), and
Eq. (7) holds as the data function except that the vectors
are replaced by 2D counterparts and the integration sphere
becomes an arc. Without loss of generality we assume that
the support of the object function lies within a disk of ra-
dius Ry centered at the origin of the measurement circle,
see Fig. 1. Let L(£, ¢o) denote the integration arc from the
2D reflectivity tomography data function, where the coor-
dinate £ = f — Ry measures the position of the wave fronts
relative to the center of the measurement circle. The key
observation is that there exists a value of & = ez such
that L(€maz, ¢B) intersects the support disk at one point.
Specifically, consider the view angle ¢p shown in Fig. 1.
The data point g(Fg, —Emaez) depends on the object only
at the point B; moreover, the data point g(5B,&maz) also

depends only on B, where § = (¢p + 7, Ro). Thus the
symmetry,

Q(FB, _é‘maz) = 9(5'3, Emaz) (11)

follows. The potato peeler heuristing argument rests on
this symmetry, and the fact that either data point can be
used to determine B.

Conceptually, reconstruction, employing the data redun-
dancy, proceeds by the repetition of three steps. First, each
point on the outermost edge of the disk support is deter-
mined using the symmetry for the outermost points, i.e.
points A, B, and C in Fig. 1. Second, each of these outer-
most points are forward projected individually back to the
data space. Third, each point’s contribution to the data is
subtracted away from the data function. When the sub-
traction is performed for all of the outermost points, then
the resulting new data function will be the forward pro-
jection corresponding to the object missing the outermost
ring, exposing the next set of points toward the interior.
In terms of Fig. 1, once the contribution of points 4, B,
and C are removed from the data function, point D is ex-
posed on the outermost edge. These steps can be repeated
until all points of the object are determined. The symme-
try used in the first step applies to all points during the
peeling procedure. Thus, we have data redundancy, and
views covering 180° degrees are sufficient to determine the
object function.

Fig. 2. Schematic of the three-dimensional object function for the
heuristic potato peeler perspective. The illustrated integration sur-
faces from opposing views 7o and §p intersect spherical support at
one point.




B. 38D reflectivity tomography

The potato peeler perspective can be generalized to 3D
reflectivity tomography in a straightforward manner. In
this case the support of the object function is contained
in a sphere of radius Ry shown in Fig. 2. Let the surface
of integration be denoted by S(6o, $o,€) where again £E=
i — R, represents the distance away from the center of the
measurement sphere. Clearly, from Fig. 2, the surface
S(6o, Po, Emaz) intersects the support sphere at one point,
and a symmetry analgous to Eq. (11) holds for points on
the outermost shell, namely:

9(7, —Emaz) = g(gOvSmaz)a (12)

where 5y = (7 — 6, ¢0 + 7, Ro). From this symmetry,
the 3D version of the heuristic potato peeler perspective
extends naturally from the 2D version. In the 3D argument
the outermost shell of the object function is determined,
making use of the symmetry in Eq. (12); only half of the
views over 47 steradians are needed to specify all points
on the outer shell. Again, the contribution of points in the
outer shell can be subtracted away from the data, exposing
the next shell toward the interior. From repeating the
peeling, only 27 steradian coverage of the sphere is needed
to determine the complete 3D object function.

V. NUMERICAL RESULTS

We performed computer-simulation studies to validate
that accurate images can be reconstructed from reduced-
scan data in 3D reflectivity tomography. A 3D Shepp-
Logan phantom was used to generate the data function
g(rq; ). For a given Ry, which is the distance between the
center of rotation and transducer, g(7;{) is a function of
variables g, ¢o, and f, where 0 < 8y < 7 and 0 < ¢ < 27
specify the direction of measurements, and te[0,R +
Ry) identifies the time of measurements to a location. We
divided the data space {6p,¢o,%} into a 60 x 120 x 128
uniform lattice and generated full-scan data on this lattice
for Rg = 30 cm.

Since the data function in Eq. (7) is non-negative, the it-
erative expectation-maximization (EM) algorithm can be
applied to reconstruct the image. We used the EM al-
gorithm for image reconstruction, because it is unclear
whether non-iterative algorithms exist for exact recon-
struction of images from reduced-scan data. For the pur-
pose of comparison, we also used the EM algorithm for
image reconstruction from full-scan data. In an attempt
to increase the convergence speed of the EM algorithm,
we used the ordered-subsets EM (OSEM) for image recon-
struction from both full-scan and reduced-scan in our sim-
ulation studies. The data set was divided into 5 subsets
along 6 dimension, and the OSEM algorithm was paral-
lelized for different ¢ values. We used 200 iterations for
both reconstructions from the reduced-scan and full-scan
data. The calculation was performed on the “Chiba City”
cluster computer at the Mathematics and Computer Sci-
ence Division in Argonne National Laboratory. With 60
processors, it took about 80 and 40 hours to reconstruct

3D images of 128% voxels from the full-scan and half-scan
data, respectively.

We show in Fig. 3 2D images at z = 0 cm (left), y = 0 cm
(middle), and z = —2.5 cm (right) in the reconstructed 3D
images. The original images are shown in the top row, and
the images in middle and bottom rows were obtained from
the full-scan and half-scan data, respectively. In Fig. 4,
we show the profiles along the central, vertical axis of im-
ages in the third column in Fig. 3. As these results show,
one can reconstruct 3D images from half-scan data with
quantitative accuracy comparable to that of 3D images re-
constructed from full-scan data.

Fig. 3. 2D images at £ = 0 cm (left), y = 0 cm {middle), and
z = —2.5 cm (right) in the 3D Shepp-Logan image. The original
images are shown in the top row. The images reconstructed from
full-scan and half-scan data are displayed in the middle and bottom
rows, respectively.

1.0
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047 7

0.0 . . ,
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Fig. 4. Original profile (solid curve), profile in images obtained from
full-scan (dotted curve) and half-scan (dashed curve) data. Profile
along the central vertical axes in images shown in the third column
in Fig. 3.
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VI. DISCUSSION

We investigated image reconstruction in 3D reflectivity
tomography. Motivated by the potato-peeler perspective
that we developed for image reconstruction from reduced-
scan data in 2D reflectivity tomography, we proposed a
potato-peeler perspective for identifying symmetry and re-
dundant information in data function in 3D reflectivity to-
mography. Such redundant information can be exploited
for accurate reconstruction 3D reflectivity images from
reduced-scan data. We conducted computer simulation
studies, and results in these studies quantitatively suggest
that 3D reflectivity tomography can accurately be recon-
structed from reduced-scan data. In many applications of
reflectivity tomography, it is not feasible to collect full-
scan data. Therefore, the practical implication of reflec-
tivity tomography with a reduced-scan configuration can
be significant. For example, when imaging breast cancer,
although only reduced-scan measurements acquired over
a hemisphere can be obtained, our results presented here
suggest that such data may contain complete information
for accurate reconstruction of 3D breast images. We also
applied the microlocal analysis [15] to demonstrate the sta-
bility of reconstructing image boundaries from reduced-
scan data and will report such results at the meeting. It
is interesting to note that our observations regarding the
stability of the reduced-scan reflectivity tomography recon-
struction problem can be related readily to a similar anal-
ysis of the limited-view thermoacoustic CT problem [9].
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Full- and minimal-scan reconstruction algorithms
for fan-beam diffraction tomography

Mark A. Anastasio and Xiaochuan Pan

Diffraction tomography (DT) is a tomographic inversion technique that reconstructs the spatially variant
refractive-index distribution of a scattering object. In fan-beam DT, the interrogating radiation is not
a plane wave but rather a cylindrical wave front emanating from a line source located a finite distance
from the scattering object. We reveal and examine the redundant information that is inherent in the
fan-beam DT data function. Such redundant information can be exploited to reduce the reconstructed
image variance or, alternatively, to reduce the angular scanning requirements of the fan-beam DT
experiment. We develop novel filtered backpropagation and estimate—combination reconstruction al-
gorithms for full-scan and minimal-scan fan-beam DT. The full-scan algorithms utilize measurements
taken over the angular range 0 < ¢ =< 2m, whereas the minimal-scan reconstruction algorithms utilize
only measurements taken over the angular range 0 < ¢ =< by, Where 7 = ¢y = 37/2 is a specified
function that describes the fan-beam geometry. We demonstrate that the full- and minimal-scan fan-
beam algorithms are mathematically equivalent. An implementation of the algorithms and numerical
results obtained with noiseless and noisy simulated data are presented. © 2001 Optical Society of

America

OCIS codes: 100.3190, 100.3010, 100.6950.

1. Introduction

Diffraction tomography (DT) is an inversion scheme
that can be used for obtaining the spatially variant
refractive-index distribution of a scattering object.
Applications of DT can be found in various scientific
fields such as medical imaging,l? nondestructive
evaluation of materials,34 and geophysics.56 Unlike
the x rays used in computed tomography (CT), the
optical or acoustical wave fields employed in DT do
not generally travel along straight lines, thus pre-
cluding the use of the geometrical optics approxima-
tion. Therefore a wide variety of techniques that are
suitable for reconstruction of CT images cannot be
used directly for reconstruction of diffraction tomo-
graphic images. CT can be viewed as a limiting case
of DT, in which the frequency of the probing radiation
tends toward infinity.

A vast majority of the algorithm development ef-
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forts in DT have utilized the classic scanning geom-
etry,” which assumes that the interrogating radiation
is plane wave and the transmitted scattered wave
field is measured in a plane (or in two dimensions,
along a line) on the opposite side of the scattering
object. This geometry is analogous to the parallel-
beam geometry of x-ray CT. In many practical sit-
uations, however, the interrogating radiation may be
not plane wave but rather produced by a line source
located a finite distance from the scattering object.
We refer to this configuration as the fan-beam geom-
etry of DT, which is somewhat analogous to the two-
dimensional (2D) fan-beam geometry of CT.

The Born and Rytov approximations® are weak-
scattering approximations that effectively linearize
the inhomogeneous Helmholtz and Ricatti equations,
respectively. The relative merits of the Born and
Rytov approximations in the context of DT have been
widely explored in the literature.191? Under weak-
scattering conditions it is customary and useful in DT
to invoke the Born or Rytov approximation that per-
mits the derivation of the Fourier diffraction projec-
tion (FDP) theorem. The FDP theorem relates the
one-dimensional (1D) Fourier transform of the mea-
sured scattered data to the 2D Fourier transform of
the scattering object. For 2D DT employing plane-
wave illumination and the classic scan configuration,
Devaney” utilized the FDP theorem to develop the




well-known filtered backpropagation (FBPP) algo-
rithm, which can be viewed as a generalization of the
conventional filtered backprojection (FBPJ) algo-
rithm of x-ray CT. Alternative families of plane-
wave DT reconstruction algorithms, referred to as
estimate—combination (E-C) algorithms and general-
ized FBPP algorithms, have been developed!? and
investigated.131¢ The family of plane-wave E-C al-
gorithms effectively operates by transforming (in 2D
Fourier space) the DT problem into a 2D Radon
transform problem that can be efficiently and stably
inverted by use of the FBPJ algorithm. The family
of plane-wave generalized FBPP algorithms recon-
structs the image directly from the DT data function
and includes the FBPP algorithm as a special mem-
ber. Both the generalized FBPP and E-C algorithms
generally require scattered data measured from view
angles in [0, 27) to perform an exact reconstruction of
a complex-valued scattering object. Accordingly, we
refer to these algorithms as being full-scan algo-
rithms.

Previously we showed!s that, in plane-wave DT
that employs the 2D classic scanning geometry, a
minimal-scan data set acquired by use of view angles
only in [0, b, = 37/2] contains all the information
necessary for exact reconstruction of the scattering
object function. As the frequency of the probing ra-
diation tends toward infinity, &, — , which re-
flects the well-known fact that measurements
corresponding to ¢ € [0, 7] completely specify the 2D
Radon transform. [Of course, compactly supported
objects are mathematically specified by a sinogram
p(&, &), where &, is contained in any open set [0, ),
but if p(£, ¢ is not continuously sampled this obser-
vation does not yield stable reconstruction algo-
rithms.] We subsequently developed minimal-scan
FBPP!5 and minimal-scan E-C16 algorithms that
were capable of reconstructing the scattering object
function by use of the minimal-scan data set. Under
the conditions of continuous sampling and in the ab-
sence of noise, we demonstrated’é that the minimal-
scan FBPP and E-C reconstruction algorithms were
mathematically equivalent to the full-scan FBPP and
E-C reconstruction algorithms, respectively.

Here we reveal and examine the redundant infor-
mation that is inherent in the fan-beam DT data
function. Such redundant information can be ex-
ploited to reduce the noise in the reconstructed image
or, alternatively, to reduce the angular scanning re-
quirements of the fan-beam DT experiment. We de-
velop novel E-C and FBPP reconstruction algorithms
for full-scan and minimal-scan fan-beam DT. We
demonstrate that the minimal-scan algorithms,
which utilize measurements taken over the angular
range 0 = & < dpyin, Where m = b, < 37/2, are
mathematically equivalent to their full-scan counter-
parts that utilize measurements over the full angular
range 0 = ¢ =< 27. An implementation of the algo-
rithms and numerical results obtained with noiseless
and with noisy simulated data are presented.

Measured data

\ /" Incident cylindrical

wave

Fig. 1. Fan-beam scanning geometry of 2D DT. The interrogat-
ing cylindrical wave propagates along the n axis, and the scattered
wave field is measured along the line n = /. We obtain full-scan
and minimal-scan data sets by varying the measurement angle ¢
between 0 and 27 or between 0 and ¢,,,;,, [see Eq. (29)], respectively.
We assume that S and D are much larger than the transverse
dimension of the scattering object.

2. Background

Here we briefly review the geometry and approxima-
tions that are traditionally employed in fan-beam DT,
as described in the pioneering work of Devaney.® A
table of the acronyms used in this manuscript is in-
cluded in Appendix A.

A. Fan-Beam Diffraction Tomography

The classic scanning configuration of fan-beam DT is
shown in Fig. 1. The fixed coordinate system (x, y),
the rotated coordinate system (£, m), and the usual
polar coordinates (r, 6) are related by x = r cos 6,y =
rsin®, £ =xcosd +ysind =rcos (¢ —6),andn =
—x sin ¢ + y cos ¢ = —r sin(¢ — 0). The scattering
object is illuminated by a monochromatic cylindrical-
wave source located at the position n = —S on the q
axis, emitting a wave field of the form

2 - S
u;’(g; (b) = UO exp(‘llr‘ni]ogél Bl)

3 exp{j2mvo[€2 + (S + D)%}
e [£*+ (S + D)*]'* ’

(1

where U, is the complex amplitude, & = 27y, is the
wave number, p is a unit vector pointing along the
positive m axis, and D is the distance of the detector
surface from the center of rotation. The incident
wave field u;(£, ) could represent a pressure field in
acoustical applications or a scalar electromagnetic
field in optical applications, for example. From mea-
surements of the scattered wave field obtained along
the ¢ axis oriented at a measurement angle ¢ at a
distance m = D from the origin, one seeks to recon-
struct the scattering object function a(r). The un-
derlying physical property of the scattering object
that is mapped in DT is the refractive-index distri-
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bution n(r), which is related to the scattering object
function by the equation a(r) = n%@) — 1.

Let u(t, ¢) denote the measured total wave field
along the line m = D, as shown in Fig. 1. The scat-
tered data are given by

us(gy ¢) = u(gy ¢) - ui(gr (b), (2)

which can be treated as a measurable data function
because u (&, ) and u; (¢, ¢) can be measured. There-
fore we can introduce a modified data function M(v,,,
&), which is given by

M, &) = ﬂ’j _v' exp[—j2m(v’ — v9) D]
0

uy(E, &)
X "'”m{u,-(g, ¢)} ’ ®

where

%, (h(D)} = (1/2m) f " h(E)exp(—j2m,)dE,

—00

4)

v = \gvoz - (5)

B. Fan-Beam Fourier Diffraction Projection Theorem

In plane-wave DT, the FDP theorem!” relates the
modified data function to the 2D Fourier transform of
the scattering object and can be viewed as a general-
ization of the Fourier slice theorem of conventional
x-ray CT. The FDP theorem is valid under condi-
tions of weak scattering and plane-wave illumina-
tion. To establish the FDP theorem for the fan-
beam DT geometry it is necessary to assume the
weak-scattering approximation and the so-called
paraxial approximation,® which is a well-known ap-
proximation in the optics literature. The paraxial
approximation requires that both S and D be much
larger than the dimension size of the scattering ob-
ject. This amounts to requiring that the largest an-
gle subtended by the object when the object is viewed
from either the source or the measurement location
be much smaller than a radian. '

Under the Born and paraxial approximations, Dev-
aney derived the fan-beam FDP theorem,?® which is
given by

/ Fourier Transform of
’ Modified Data

™>
~
>

B

Fig. 2. The fan-beam FDP theorem states that M(v,,, $) is equal
to the 2D Fourier transform of a(r) along the semielliptic arc AOB
that has semiaxes equal to v, and ve/x.

As displayed in Fig. 2, Eq. (6) states that the modified
data function, M(v,,, ¢), is equal to a semielliptical
slice, oriented at angle ¢, through the 2D Fourier
transform of the object function a(r). One can also
derive the FDP theorem by employing the Rytov ap-
proximation instead of the Born approximation. In
this case, Eq. (6) remains unchanged and only Eq. (3)
needs to be appropriately redefined.?

3. Full-Scan Reconstruction Algorithms for Fan-Beam
Diffraction Tomography

First, we present families of full-scan FBPP and E-C
reconstruction algorithms for fan-beam DT. These
fan-beam algorithms are novel and contain the pre-
viously developed families of plane-wave FBPP and
E-C algorithms as limiting cases. They will be gen-
eralized to the minimal-scan situation in Section 4
below.

A. Fan-Beam Full-Scan Estimate~-Combination
Algorithms

The Radon transform?8 of the scattering object func-
tion a(r, 6) is defined as

-

p(gs (bO) = f f a(r’ e)s[g -r COS((bo - 9)}(11',
' )
where ¢, is the projection angle, £ = r cos(¢, — 6), and

n = —rsin(é, — 0). The 2D Fourier transform of p(§,
&) is defined as [strictly speaking, P,(v,) is the com-

M@, ) = r r a(r)exp{ —j2w[§§ E- (' - vo)n]}dr
=0
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|vm| = XVo,

|vml > XVo- (6)
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bination of the 1D Fourier transform with respect to
v, and a 1D Fourier series expansion with respect to
&, of the Radon transform]

1 3
Pk(va) = 2_Tj J. p(ga ¢0)

0 —
X exp[—j2mv.E — jhdoldEdd,,  (8)

where v, is the spatial frequency with respect to £ and
the integer k is the angular frequency index with
respect to ¢y It is well known that a(r,8) can
readily be reconstructed exactly from its Radon
transform p(¢, &) [or, equivalently, P,(v,)] by use of
a wide variety of computationally efficient and nu-
merically stable reconstruction algorithms such as
the FBPJ algorithm. Therefore the task of image
reconstruction in fan-beam DT is tantamount to the
task of estimating P,(v,). Furthermore, because
P,(v,) for v, = 0 contains full knowledge of the Radon
transform, one needs to estimate Py (v,) from the mea-
sured scattered data only for v, = 0.

2

Comparison of Eqgs. (9) and (11) yields that, for |v,,]
= XVos

Pk(va) = 'Y(Vm/Xz)kMk(Vm), (13)
provided that

v 2 v 271/2 2
Vel = (—";) + {[v02 - (-ﬂ> } - vo} . 9
X X

From Eq. §14§ we see that v, is real (thatis, 0 = v, =
vo VI + 1/%®) only for |v,,,| = xvo.

In the absence of data noise or inconsistencies, one
can use Eq. (13) to obtain P,(v,) exactly from M, (v,,),
which can readily be obtained from the modified data
function. In the presence of data noise or inconsis-
tencies, one can use Eq. (13) to obtain an estimate of
P,(v,). For any given 0 = v, = v, + 1/x2, we
show in Appendix B that four different roots v,,,;, i = 1,
2, 3, 4, satisfy Eq. (14). However, only two of these
four roots correspond to real-valued frequencies, which
are given by .

4 1/2
X ) (15)

vaz 1/2
Vm1 = TVm2 = Um = "“(1 - E}) %1 - (1 — xD)@2/2ve) + [1 — X212 — XD (v /voH ]2

From Eqgs. (7) and (8) it can be shown!® that

2 £
Pk(va)=(—j)"f J. a(r)

6=0 ¥r=0
X exp(—jk0)d,(2wv,r)rdrde, 9)

where oJ,, indicates the kth-order Bessel function of
the first kind. Because M(v,,, ¢) is a periodic func-
tion of &, it can be expanded into a Fourier series with
expansion coefficients given by

1 27
Mv,) = E;J. M(v,, d)exp(—jkb)dd. (10)

0
Substituting Eq. (6) into Eq. (10), noting that § = r
cos(d — ) and = —r sin(¢ — 6), and carrying out the
integration over angle ¢ (Ref. 19) yield

In the plane-wave case there are only two roots,?
which one can obtain from Eq. (15) by letting x = 1.

Therefore, for a given 0 < v, < vo(1 + 1/x%*/%, one
can obtain two estimates of P,(v,) from knowledge of
M,(v,,) at v,,; and v,,, namely,

Vm1 * Vm *
Pk(va) =Y 2 Mk(vml) = 'Y(-_2 Mk(vm),
X X

(16)
Vm2 *
Pyv,) = [’Y(“)(T)J M, (V)
“k
= (—D"[v(”;"z—‘)] Mi(—v,). an

In establishing Eq. (17) we used the property y(—v,,")
= —y(v,,)" . It can readily be shown that, as the

x 2%
M (vy) = (—j)kv(vm')'kf J. a(Pexp(—jE0)J (2T v, 2 — v, 2)rdrde  |v,| =< xvo,

r=0 vo=0
=0 lvm[ > XVos (11
where v, = v,,/x%, v, =Jj(v' — vg), and incident wave becomes planar (i.e., as x — 1), the
above results become the results in Ref. 12 for the

plane-wave case.

I — : In the absence of noise, Egs. (16) and (17) yield
v, = M,_t (12) identical (and exact) values of P,(v,). In the pres-
Vi TV, ence of data noise (or other inconsistencies), the two
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estimates of P,(v,) are distinct, suggesting that it
may be beneficial to combine the two estimates lin-
early!? to form a final estimate of P,(v,) as

Py(v,) = (ﬂk(vm)['YkMk(Vm)]

+[1 - ) (-DY*M(-v,)],  (18)
where w,(v,,) is a combination coefficient that dic-
tates how Eqs. (16) and (17) are combined. This
strategy of linear combination has been demon-
strated to be useful in reducing the noise in the re-
constructed image.12-1¢ Because each selection of
w(v,,) gives rise to a particular final estimate P.(v,),
Eg. (18) can be interpreted as an estimation method
for obtaining P,(v,) (or, equivalently, the Radon
transform). Because w,(v,,) may be any complex-
valued function of v,, and &, Eq. (18), in effect, pro-
vides infinite families of estimation methods. From
the estimate Py(v,) (i.e., the Radon transform), one
can subsequently reconstruct the image a(r) by use of
the FBPJ algorithm. For simplicity, the use of Eq.
(18) to estimate P,(v,) coupled with the 2D FBPJ
algorithm to reconstruct a(r) is referred to as a fan-
beam full-scan E-C reconstruction algorithm. As S
—> oo, we observe that x — 1 and that the fan-beam
full-scan E-C reconstruction algorithms reduce to the
plane-wave full-scan E-C reconstruction algorithms
developed previously.!2

B. Fan-Beam Full-Scan Filtered Backpropagation
Algorithms

The fan-beam full-scan E-C algorithms discussed
above first estimate P,(v,) (i.e., the Radon transform)
from the modified data function M,(v,,) and subse-
quently reconstruct the image by inverting the esti-
mated Radon transform. Below, we develop
algorithms that reconstruct images directly from the
modified data function. Using Eq. (9), one can di-
rectly express the object function in terms of the es-
timate P,(v,) as

h=—-

ar) =27 S j* f Pyvo)
=0

a

X exp(jk0)J (2mv,r)v,dv,. (19
Substituting Eq. (18) into Eq. (19) yields
= . vo VIHI/X2
a(r) = 27 2, j* exp(jk6) f {or (V)Y M)
k== ve=0

+ [1 = @) (= Dy M=)}y (2o r)v,dve.

(20)

Using the relationship between v, and v,, in Eq. (14),
one can show that, for 0 < v, = voV1 + 1/X%,

v, dv,,’

= [(1 = xv' + x*vol. (21)

v dv, =
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Substituting this result into Eq. (20), and noting that
v, = v,/x% yields

~ . . X v, ,
a(¥) =7 2, j* exp(jko) f o) [ —x%v
k=—o vm=0

+ X0V Mi(v,) + [1 — @u(v,)]

X (=D *My(— v}

X J[2w(v,'2 — vpzr)m]dvm. (22)
To reduce Eq. (22) to the form of the FBPP algo-

rithm, we assume that w,(v,,) + wx(—v,) =1. Using
the integral identities?

()4t (vn)** exp(jk0)T [2n (v, — v,1)"]

1 2%
= ——f exp[jkd) * j2mv, % + 2mv,m |do  (23)
2% X

0

and defining

MY, &)= O, exp(jkd)oyv,) My(v,)

=—

yield for Eq. (22)

(24)

1 P27 fxv |vm| 2 '2 @
a(r) =4 ) [(1 =X )V’ + X vO]Mw(vma d))
2 X'v

0 -Xvo

X exp[jQ'n'vm f—i + 21'rv“'q]d¢dvm. (25)

Equation (25) describes a family of fan-beam full-scan
FBPP algorithms [indexed by the choice of w,(v,,)],
which becomes the family of FBPP algorithms for
plane-wave full-scan DT12 when x — 1. In particu-
lar, when w,(v,,) = 1/2, Eq. (25) corresponds to the
fan-beam FBPP algorithm suggested by Devaney.?
Because the derivation of the family of fan-beam full-
scan FBPP algorithms was based on the family of
fan-beam full-scan E-C algorithms [Eq. (20)], the E-C
and FBPP algorithms are mathematically equiva-
lent. However, as will be demonstrated below, these
FBPP and E-C algorithms respond differently to data
noise and other experimental errors.

4. Minimal-Scan Reconstruction Algorithms for
Fan-Beam Diffraction Tomography

As discussed above, the redundant information con-
tained in the scattered data can be employed for re-
ducing the image noise. Such information can also
be used for reducing the angular scanning require-
ments in a DT experiment.

A. Consistency Conditions and the Fan-Beam Data
Space

According to the fan-beam FDP theorem in Eq. (6),
the modified data function M(v,,, $) satisfies the con-
sistency condition

M@, &) = M(~vy,, &+ 7 — 2a), (26)
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fémm
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- X% 0 +xv

Um

Fig. 3. Complete data space W = UBUECU D contains data
from the view angles in [0, 27]. Subset M = U sl U @B U €
obtained from the view angles in [0, d,,,] is called the minimal-
complete data set. ‘The minimal-complete data set contains all
the information necessary for exact reconstruction of the scattering
object function.

where

(' - Vo)2 e

(2/xH + (v = vo)?
Let W = [|v,.| = xvo, 0 = ¢ = 27] denote the complete
(or full-scan) data set. As shown in Fig. 3, W can be

divided into the four subspaces, &, %, €, and 9,
where

@7

sina = sg‘n(v,,,)[

s = [[vn] = xvo, ,0 = & = 20 + 23],

B =[|vn] = xvo, 20 + 28 = b =7 + 2a],
© = [[vl = xvo, 7 + 20 = & = i,

D = [[v| = XV, Guin = & = 27,

where

1
@+ 157

Using Eqgs. (26) and (27), one can verify that infor-
mation in subspace 6 is identical to that in subspace
o and that information in subspace % is identical to
that in subspace &. As shown in Fig. 3, because the
boundaries between the subspaces are generally
functions of v,, and ¢ and because each horizontal
line in ‘W corresponds to a measurement acquired at
a particular view angle, the information in subspace
93 cannot in practice be determined independently of
that in subspace ¢ and vice versa. We therefore
refer to the union, M = A U B UG = [|v,,,| = xv0, 0 =
& = dpia), as the minimal-complete data set. A plot
of &, versus xisshownin Fig. 4. Asx— 1, —
37w/2, and M reduces to the minimal-complete data
set proposed previously for plane-wave DT.15> How-
ever, for x < 1, &, < 3m/2, which indicates that the

sin & = G =T+ 25, (28)

280

B60L - b e

240t~

bmin (degrees)

. 1800 0.25 0.5 0.75 1

X

Fig. 4. Plot of ¢, versus x reveals that, in fan-beam DT, the
required angular scanning range is less than 270°.

angular scanning requirements of fan-beam DT are
less restrictive than for plane-wave DT.

Figure 5 clearly demonstrates that the minimal-
complete data set contains all the information re-
quired for an exact reconstruction. According to the
FDP theorem, the segment AOB corresponds to a
semielliptical slice through the 2D Fourier transform
of a(r), which can be obtained from the modified data
function M(v,,, &). The Fourier space coverages pro-
duced by the segments OA and OB as ¢ varies from
0 to ¢, are shown in Figs. 5(a) and 5(b), respec-

by

vz

(a) (b)

, (©
Fig. 5. As ¢ varies from 0 to ¢,,;,, the two segments OA and OB
(Fig. 2) yield two incomplete coverages of the 2D Fourier space of
the object function, which are shown in (a) and (b), respectively.
Superimposing the two incomplete coverages in (a) and (b), one
obtains a complete coverage, as shown in (c), of the 2D Fourier
space of the object function.
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tively. It can be observed that each of these two
coverages alone provides only an incomplete coverage
of the 2D Fourier space of a(r). However, one can
superimpose these two incomplete coverages in Figs.
5(a) and 5(b) to obtain complete coverage of the 2D
Fourier space of a(r), as shown in Fig. 5(c).

The redundant information contained in subspaces
o and € of the minimal-complete data set needs to be
normalized properly before or during the reconstruc-
tion procedure. Let M™ (v, &) denote the minimal
scan data, where M™(v,,, &) = M(v,,, ¢)for 0 = ¢ =
&pin and M™(v,,, &) = 0 for i < ¢ < 2. Con-
sider a weighted data set M'(v,,, ¢), defined as

M (v, 6) = WV OYM™ (v, $), (29)

where w(v,,, ¢) can be a function of v,, and ¢ that
satisfies

WV, &) + W~V b+ 7 —20) =1 (30a)
in complete data space W, ’
wv,, ¢) =1 (30b)
in subspace %, and
w(v,, ¢)=0 (30¢)

in subspace @. One can choose different w(v,,,, ¢) in
subspaces & and 6 as long as these w(v,,, ¢) satisfy
Eq. 30(a). In the numerical examples that follow,
we used the explicit form for w(v,,, ¢) given by Eq.
(38). We can now readily obtain minimal-scan re-
construction algorithms for fan-beam DT.

B. Fan-Beam Minimal-Scan Estimate—Combination
Algorithms
Because of Eq. 30(c), Eq. (29) can also be rewritten as

M (v, ¢) = WV, &YM(vy, b). (31)
Using Eqgs. (26) and (30a), one can verify that

M@, ¢) = M@, d&)+ M (~—v,, &+ 7 — 2a).
(32)
Using Eq. (82) in Eq. (10), one obtains

Mk(vm) = [Mk’(vm) + (—l)k‘y—szkl(_vm)]» (33)
where

2 .
My (vy) = (1/27) J. exp(—jkO) M (v,,, $)do.

0

Multiplying both sides of Eq. (33) by ¥* and noting
Eq. (16), we conclude that, for |v,| = xv,,

Pk(va) = [‘YkMkl(vm) + (—l)k'ynkMk'(_vm)]’ (34)

where v, and v,, are related by Eq. (14). A fan-beam
minimal-scan E-C algorithm is formed by use of Eq.
(34) to estimate the Radon transform from the
minimal-complete data set acquired at measurement
angles 0 < & =< &,,;, and the FBPJ algorithm to

reconstruct the final image. One can form different
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Fig. 6. The numerical phantom used in the simulation studies
comprised two concentric ellipses. The fan-beam FDP theorem
was used to calculate analytically the simulated scattered field
data from the phantom.

fan-beam minimal-scan E-C algorithms by specifying
different choices for w(v,,, ) in Eq. (31) that satisfy
Egs. (30).

C. Fan-Beam Minimal-Scan Filtered Backpropagation
Algorithms

Using Eq. (34) in Eq. (19) and using the strategy
outlined in Subsection 3.B, we can also develop fan-
beam minimal-scan FBPP algorithms that can recon-
struct the object function directly from the weighted
minimal-complete data set that is given by

$min [ XV0 lvml 2, 2 ,
a(r) = N [(1 =X + x*vM'(vy, &)
0 -Xvo

X exp[j21rvm _&E + 21rvm]d¢dv,,,, (35)
X

where ¢_,;, is a function of x as stated in Eq. (28).
One can form different fan-beam minimal-scan FBPP
algorithms by specifying different choices for w(v,,, $)
in Eq. (31) that satisfy Egs. (30). When x = 1, the
fan-beam minimal-scan FBPP algorithms reduce to
the plane-wave minimal-scan FBPP algorithms de-
rived previously.15

5. Numerical Results

We numerically investigated the fan-beam full- and
minimal-scan reconstruction algorithms, using sim-
ulated noiseless and noisy data.

A. Data and Noise Model

We employed the numerical phantom composed of
two concentric ellipses, as displayed in Fig. 6. The
values of the scattering object function that corre-
spond to the outer and inner ellipses are 0.0005 and
0.0001, respectively.  We chose a fan-beam geometry
specified by x = 0.8, but our observations below hold
for arbitrary . The FDP theorem was employed to
calculate analytically the modified data function
M(v,,, ) that by means of Eq. (3) determined the
scattered field data u, (¢, ¢). Therefore our simula-
tions were designed to demonstrate the performance
of the reconstruction algorithms under the condition
that the Born and paraxial approximations are valid.
The evaluation of the performance of the algorithms
when the Born and paraxial approximations are not
valid10.11.20 remains a topic for future study. The




discrete complete data set comprised 128 equally
spaced measurement angles in [0, 2m). The discrete
minimal-complete data set comprised 92 equally
spaced measurement angles in [0, 4.49] (or, equiva-
lently, [0, 257.3°]). In this way, both data sets had
the same angular sampling increment, Ad = 2m/
128 ~ 4.49/92. The data function M(v,,, ¢) con-
tained 129 evenly spaced samples in [—xvo, Xvol-

To simulate the effects of data noise, we treated the
scattered data uy(&, ¢) as a complex stochastic pro-
cess with a real and an imaginary component, de-
noted w,” (£, ) and u, (£, ¢), respectively. (Here,
boldface type for u and a denotes a random variable.)
Let u,”) = 2, ” + Au,” and u,® = % + Au,?,
where 1, and u,© are the means of u,” and u,"”),
respectively. The statistics of the deviates Au”
and Au,® are described by the circular Gaussian

model,

. 1
p(Aus(r)’ Ausu)) =
2mo;0,
1/Au” Aul”
X - =+
exp[ 2( o’ o ”’

(36)

where 0,2 and 0,2 are the variances of Au,” (¢, &) and
Au, (£, &), respectively.

To study the noise properties of the reconstructed
images quantitatively, we generated N = 250 noisy
complete and minimal-complete data sets by using
the noise model in Eq. (36) with o, = o, = 0.05. We
used the fan-beam full-scan and minimal-scan E-C
and FBPP algorithms to reconstruct sets of 250 noisy
images from these noisy data sets. The matrix size
of the reconstructed images was 128 X 128 pixels,
and the wavelength of the incident radiation was
equal to 2 pixels. The local image variance was cal-
culated empirically from the N sets of reconstructed
images as

1 1[& ?
var[a(r)] = o1 {E a(r)? - 5 [E ai(r)] } ,

i=1 i=1

(37)

where a,(r) is the ith image obtained by use of the
. reconstruction algorithm under investigation.

B. Implementation Details

1. E-C Algorithms

From the uniformly sampled values of the scattered
field u (£, &), M,(v,,) can be determined at uniformly
spaced values of v,,. However, because of the non-
linear relationship [Eq. (14)] between v, and v,,, the
uniformly spaced values of v,, at which M,(v,,) is
sampled do not generally correspond to the uniformly
spaced values of v, at which one needs to evaluate
P,(v,) (to utilize the fast Fourier transform in the
FBPJ algorithm). For each of 65 evenly spaced val-
ues of v, spanning the range 0 <y, = vo\/]1 + 1/%%,
we used linear interpolation to determine the values

of M,(v,, = Vv,2 + 1,2 and M,(v,, = =V Vet + vur")
from the sampled values of M,(v,) and M,(-v,),
which we subsequently used in Eq. (18) to evaluate
P,(v,). For each value of k, zero-padding interpola-
tion was employed to increase the sampling density
along the v,, axis of M,(v,,,) by a factor of 3 to increase
the accuracy of the interpolation operation. We em-
ployed the consistency condition Pu(v,) =
(~1)*P,(~v,) to obtain the 64 samples of P,(v,) for v,
spanning the range —vyV1 + 1 /Xé =v,<0. Inour
implementation of the FBPJ algorithm, an unapo-
dized ramp filter was used. The interpolation nec-
essary for aligning the backprojected data onto a
128 x 128 pixel discrete image matrix was performed
by bilinear interpolation. When M, (v,,) is replaced
by M,'(v,,), and Eq. (34) is employed in place of Eq.
(18), the above paragraph also describes our imple-
mentation of the fan-beam minimal-scan E-C algo-
rithm.

2. FBPP Algorithms
In the full-scan and minimal-scan FBPP algorithms,
at each measurement angle ¢, M(v,,, &) or M'(v,,,, $),
respectively, was multiplied bgr the depth-dependent
filter (Jv,,|/x*)[(Q — x®)v' + x“volexp[27v, m] for each
of 128 discrete values of . For each value of m, the
filtered data were zero padded to ensure that the
pixel size of the reconstructed image matched the
pixel size of the images reconstructed by use of the
full- and minimal-scan E-C algorithms. The inter-
polation necessary for aligning the backpropagated
data onto a 128 X 128 pixel discrete image matrix
was performed by bilinear interpolation.

The fan-beam minimal-scan E-C and minimal-scan
FBPP algorithms utilized the weight function w(v,,,

¢) [see Eq. (29)] given by

w(v,, ¢)
( . o
Sin2|:z m:l 0<¢=25+2a
! 20+ 2a=sdb=7+ 2a
T |mB/2) - ¢ - '
sin [4“—-——(11./4)_*_& w+ 20 = 6= duin
\0 ¢min =s¢= 2w
(38)
C. Results

From the simulated noiseless complete and minimal-
complete data sets we reconstructed the phantom,
using the full- and minimal-scan fan-beam recon-
struction algorithms. Figures 7(a) and 7(b) show
the images obtained from the full-scan and the
minimal-scan E-C reconstruction algorithms, respet-
tively. The full-scan E-C algorithm was specified by
w,(v,) = 1/2 in Eq. (18). The images appear iden-
tical, as is consistent with our assertion that the full-
and minimal-scan E-C algorithms are mathemati-
cally equivalent in the absence of noise or other er-
rors. Figures 7(c) and 7(d) show the images
obtained by use of the full-scan and the minimal-scan
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Fig. 7. Images reconstructed from noiseless data by use of (a)
full-scan E-C, (b) minimal-scan E-C, (¢) full-scan FBPP, and (d)
minimal-scan FBPP reconstruction algorithms.

FBPP reconstruction algorithms, respectively.
Again, the images appear identical, consistent with
our assertion that the full- and minimal-scan FBPP
algorithms are mathematically equivalent in the ab-
sence of noise or other errors. As expected, it is also
observed that the images reconstructed with the full-
and minimal-scan E-C algorithms [Figs. 7(a) and
7(b)] are identical to the images reconstructed with
the full- and minimal-scan FBPP algorithms [Figs.
7(c) and 7(d)].

Using one of the simulated noisy complete and
minimal-complete data sets, we again reconstructed
the phantom, using the full- and minimal-scan E-C
and FBPP reconstruction algorithms. Figures 8(a)
and 8(b) show the images obtained by use of the
full-scan and the minimal-scan E-C reconstruction
algorithms, respectively. The images no longer ap-
pear identical, and the image reconstructed with the
full-scan E-C algorithm appears less noisy than the
image reconstructed with the minimal-scan E-C al-
gorithm. Figures 8(c) and 8(d) show the images ob-
tained by use of the full-scan and the minimal-scan
FBPP reconstruction algorithms, respectively. Simi-
larly, the image reconstructed with the full-scan
FBPP algorithm appears less noisy than the image
reconstructed with the minimal-scan FBPP algo-
rithm.

The observation that the full-scan algorithms gen-
erate cleaner-looking images than do the minimal-
scan algorithms is not surprising and can be
qualitatively understood by examination of ways in
which the redundant information inherent in the DT
data function is utilized. The full-scan FBPP and
E-C algorithms [with w,(v,,) # 0, 1] effectively use
the redundant information to reconstruct two sepa-
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Fig. 8. Images reconstructed from noisy data by use of (a) full-
scan E-C, (b) minimal-scan E-C, (c) full-scan FBPP, and (d)
minimal-scan FBPP reconstruction algorithms. The noisy data
were generated with o, = o; = 0.05 in Eq. (36).

rate images that are averaged to form the final image.
It has been quantitatively demonstrated that this
effective averaging operation ¢an result in an unbi-
ased reduction of the reconstructed image vari-
ance.1214 The minimal-scan algorithms, however,
utilize part of the redundant information that is in-
herent in the data function to reduce the angular
range over which measurements are required for the
reconstruction. The redundant information not
used for this purpose can be used to reduce the image
variance of the reconstructed image. Specifically,
the complementary information contained in sub-
spaces sf and 6 of Fig. 3 is weighted, as described by
Eq. (29), and is subsequently combined during the
reconstruction procedure. However, unlike the full-
scan algorithms, the minimal-scan algorithms cannot
further reduce the reconstructed image variance by
exploiting the fact that subspaces ® and & contain
redundant information.

Although the full- and minimal-scan E-C algo-
rithms are mathematically equivalent to the full- and
minimal-scan FBPP algorithms, we observed from
Fig. 8 that the E-C and FBPP algorithms respond
differently to noise that is present in a discrete data
set. To confirm this observation quantitatively, we
calculated the local image variances of images recon-
structed, using the different methods. Figure 9(a) is
a plot of the local variance obtained from the
minimal-scan FBPP reconstructed images divided by
the local variance obtained from the minimal-scan
E-C reconstructed images. Clearly, the ratio of the
variances is everywhere greater than 1, quantita-
tively demonstrating that the minimal-scan E-C re-
construction algorithms are less susceptible to the
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Fig. 9. (a) Plot of the local variance obtained from the full-scan
FBPP reconstructed images divided by the local variance obtained
from full-scan E-C reconstructed images. (b) Plot of the local
variance obtained from the minimal-scan FBPP reconstructed im-
ages divided by the local variance obtained from minimal-scan E-C
reconstructed images. In both the full- and the minimal-scan
cases, the E-C algorithms did a better job of suppressing data noise
than did the FBPP algorithms.

effects of data noise than are the minimal-scan FBPP
reconstruction algorithms. Figure 9(b) is a plot of
the local variance obtained from the full-scan FBPP
reconstructed images divided by the local variance
obtained from the full-scan E-C reconstructed im-
ages. The ratio of the variances is everywhere
greater than 1, quantitatively demonstrating that
the full-scan E-C reconstruction algorithms are less
susceptible to the effects of data noise than are the
full-scan FBPP reconstruction algorithms. These
results are consistent with those obtained previously
for full- and minimal-scan DT utilizing plane-wave
illumination.16.21 ,

6. Summary

In this study, we revealed and examined the redun-
dant information that is inherent in the fan-beam DT

data function. Such information can be exploited to
reduce the reconstructed image variance or alterna-
tively to reduce the angular scanning requirements of
the fan-beam DT experiment. We developed novel
full-scan and minimal-scan E-C and FBPP recon-
struction algorithms for fan-beam DT. The family of
fan-beam full-scan E-C algorithms operates by trans-
forming (in 2D Fourier space) the fan-beam DT prob-
lem into a 2D parallel-beam x-ray CT problem, which
can be efficiently and stably inverted by use of the
FBPJ algorithm. The family of fan-beam full-scan
FBPP algorithms operates directly on the modified
data function to reconstruct the image and contains
the fan-beam FBPP algorithm suggested by Dev-
aney® as a special member. Different members of
the families of full-scan E-C and FBPP algorithms
are specified by different choices of the combination
coefficient w,(v,,), which controls ways in which the
redundant information in the data function is com-
bined. Reconstruction algorithms that correspond
to different choices of w,(v,,) will in general respond
differently to the effect of noise and discrete sam-
pling.12

The fan-beam minimal-scan E-C and FBPP algo-
rithms were developed from the concept of the
minimal-complete data set. The minimal-complete
data set, which is acquired by use of view angles only
in [0, &) Wwhere T < &y, = 37/2, contains all the
information necessary for exactly reconstructing the
scattering object function. The fan-beam minimal-
scan E-C and FBPP algorithms utilize a weighting
function w(v,,, ¢) to normalize appropriately the par-
tially redundant information inherent in the
minimal-complete data set. Accordingly, one can
form different fan-beam minimal-scan E-C and FBPP
algorithms by specifying different choices for this
weighting function. Reconstruction algorithms that
correspond to different choices of w(v,,, ¢) will in
general respond differently to the effect of noise and
discrete sampling.’® It can be readily verified that,
under the conditions of continuous sampling and in
the absence of noise, the minimal-scan E-C and FBPP
algorithms are exact and mathematically equivalent
to their full-scan counterparts that utilize measure-
ments over the angular range 0 = ¢ < 27,

An implementation of the fan-beam full-scan and
minimal-scan algorithms has been presented, along
with numerical results obtained with noiseless and
with noisy simulated data. It was observed that the
full-scan algorithms did a better job of suppressing
data noise than did their minimal-scan counterparts.
We quantitatively demonstrated that the full- and
minimal-scan E-C algorithms are less susceptible to
data noise and to finite sampling effects than are the
full- and minimal-scan FBPP algorithms, respec-
tively. This result is consistent with the observation
that the FBPP-based algorithms involve more-
complicated numerical operations than do the E-C-
based algorithms, which may amplify the
propagation of noise and errors into the reconstructed
image.

We have assumed a 2D imaging model in this
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study. Therefore the developed reconstruction algo-
rithms may be useful for applications in which out-

It can readily be verified that the four roots of Eq.
(A2) are given by

Vm1 = “Vm2 = va(l -

V3 = Ve = va(l -

of-plane scattering is not significant. The full-scan
E-C and FBPP reconstruction algorithms can be gen-
eralized readily to address the three-dimensional DT
problem by use of spherical-wave sources and planar
measurement surfaces. It remains unclear whether
numerically stable versions of the minimal-scan E-C
and FBPP reconstruction algorithms can be devel-
oped for three-dimensional imaging geometries.

Here we have developed linear reconstruction al-
gorithms for fan-beam DT. It was not our intent to
address the limitations of the Born or Rytov!®.1
weak-scattering approximation. The developed full-
and minimal-scan algorithms will, however, provide
a natural framework for the incorporation of higher-
order scattering perturbation approximations?-24
into the algorithms. It remains to be determined
whether minimal-scan reconstruction algorithms can
be developed without use of the paraxial approxima-
tion.25 We intend to report on the theoretical devel-
opment and numerical analysis of these problems in
a forthcoming publication.

Appendix A: Acronyms Used

CT Computed tomography
DT Diffraction tomography
E—-C reconstruction Estimate-combination recon-

algorithm struction algorithm
FBPJ reconstruction  Filtered backprojection re-
algorithm construction algorithm
FBPP reconstruction Filtered backpropagation re-
algorithm construction algorithm
FDP theorem Fourier diffraction projection

theorem

Appendix B: Relationships between v, and v,
From Eq. (14) we know that

b \2 b \2]172 2
v = (—';') + {[v02 - (—m) ] - vo} . (A1)
X X

For a given v, that satisfies 0 < v, =< v, V1+1/x", we
would like to find the values of v,, that satisfy Eq.
(Al). Thisis equivalent to solving for the roots of the
fourth-order equation:

4

+ v, 2(v,2 — 4vp) = 0.

2

(A2)
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v 2\ 1/2 X4 1/2
e - s A3
4v02) (1/2{1 T R T xz)(va?/vm”z}) A3
vaz 1/2 X4 1/2 a0
) Al - (1AW 2vd) - [1- XA - XA /v1]
Because when 0 < v, < v,V1 + 1/x*
v 2 271/2
1—(1—x2)2—:0—2<[1—x2(1~x2) v_:i:l , (A5)

we observe that the roots v,,3 and v,,, are complex
valued and therefore are not physically meaningful.
As expected, when x — 1, Eq. (A3) reduces to the
known result!? for plane-wave DT given by

(A6)

Vi1 = “Vme = va(l -
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An Improved Reconstruction Algorithm for 3-D Diffraction
Tomography Using Spherical-Wave Sources

Mark A. Anastasio* and Xiaochuan Pan

Abstract—Diffraction tomography (DT) is an inversion technique that
reconstructs the refractive index distribution of a weakly scattering object.
In this paper, a novel reconstruction algorithm for three-dimensional
diffraction tomography employing spherical-wave sources is mathe-
matically developed and numerically implemented. Our algorithm is
numerically robust and is much more computationally efficient than
the conventional filtered backpropagation algorithm. Our previously
developed algorithm for DT using plane-wave sources is contained as
a special case.

Index Terms—Diffraction tomography, wavefield inversion, 3-D imaging.

I. INTRODUCTION

In diffraction tomography (DT), a weakly scattering object is interro-
gated using a diffracting wavefield, and the scattered wavefield around
the object is measured and used to reconstruct the (low-pass filtered)
refractive index distribution of the scattering object. The principles of
DT have been extensively utilized for developing optical [1], [2] and
acoustic [3] tomographic imaging systems for biomedical applications.

It is known that the filtered backpropagation (FBPP) and direct
Fourier (DF) reconstruction algorithms for three-dimensional (3-D)
DT possess certain limitations [4]. The depth-dependent filtering
(backpropagation) in the 3-D FBPP algorithm requires a large number
of two-dimensional (2-D) fast Fourier transforms (FFTs) to be per-
formed for processing the measured data at each measurement view,
which renders the 3-D FBPP algorithm computationally demanding.
Furthermore, we have shown that [in two-dimensional (2-D) DT]
the FBPP algorittm may amplify data noise more than alternative
algorithms do [5]. The 3-D DF algorithms require the use of a 3-D
interpolation method to obtain samples on a 3-D Cartesian grid in
the Fourier space of the scattering object, upon which a 3-D inverse
FFT can be employed to reconstruct the scattering object function.
Because the sample density in the 3-D Fourier space obtained from
the measured data is nonuniform, sophisticated and computationally
demanding interpolation strategies are generally required to avoid
producing significant interpolation errors that would degrade the
accuracy of the reconstructed image.

For 3-D DT employing plane-wave sources, we have recently
developed a new class of reconstruction algorithms that circumvent
the shortcomings of the 3-D FBPP and DF algorithms [4]. These
algorithms, referred to as plane-wave estimate-combination (E-C) re-
construction algorithms, effectively reduce the 3-D DT reconstruction
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problem to a series of 2-D X-ray reconstruction problems and, thus,
greatly reduce the large computational load required by conventional
3-D DT reconstruction algorithms. Additionally, these algorithms do
not require an explicit 3-D interpolation in the Fourier space of the
scattering object.

In many imaging applications [1], [6], it may be useful to utilize a
diverging spherical-wave rather than a plane-wave to interrogate the
scattering object. Because of the distinct advantages of the E-C recon-
struction algorithms for plane-wave DT [4], it is important to gener-
alize them to DT employing spherical-wave sources. In this paper, we
generalize our previously developed (plane-wave) E-C reconstruction
algorithms to DT employing spherical-wave sources and numerically
demonstrate the developed algorithm using simulated data.

II. BACKGROUND

We will utilize the model of spherical-wave DT described by De-
vaney in [7], the scanning geometry of which is shown in Fig. 1. The
case of 3-D DT utilizing a plane-wave source can be viewed as a special
case of spherical-wave DT and will be discussed below. The scattering
object is illuminated by monochromatic spherical-wave source located
at the position 7 = ~ S on the 7 axis, emitting a wavefield of the form

ej2ru0|F—Sﬁ|
|7 - S3|
eI27r0 V€3 +:2+(S+D)?
= Ao
VE+z2+(5S+ D)2

uo(€, z, ¢) = Ao

M

where Ao is the complex amplitude, # = 271y is the wavenumber, i
is a unit vector pointing along the positive 7 axis, and D is the distance
of the detector surface (i.e., £~z plane) to the axis of rotation (ie., =
axis). A complete data set is acquired by varying the view angle & be-
tween 0 and 2, where ¢ denotes the angle measured from the positive
r axis. (The rotated coordinates (£, 7) are related to the unrotated co-
ordinates (2, y) by £ = 2 cos¢ + ysin¢ andn = ycosé — rsind.)
From the measured scattered wavefield data, one seeks to reconstruct
the scattering object function a (). The underlying physical property
of the scattering object that is mapped in DT is the refractive index dis-
tribution n(7), which is related to the scattering object function by the
equation a(7) = () — 1.

Let u(€, z, ¢) denote the measured total wavefield in the £~z plane
positioned at 7 = D, as shown in Fig. 1. The scattered data is given by

us(£721¢) =U(E,Z,¢) _uo(fs:’d)) (2)

which can be treated as a measurable data function because u (¢, z, ¢)
can be measured and because uo (£, z, @) is assumed known. We can
introduce a modified data function

M(tm, v2, 8) = 2 /a7 =00 F, {"’(g’z’ d’)} ®
0

Uo (5929 ¢)
where F... . {h(€.2)} = (1/27) [ [ h(€)e=2mme+ved) ge gz
5
X=V5+D @
and
vih vi
V-5 - ©

0018-9294/03$17.00 © 2003 IEEE
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o z
Incident spherical \
wave \
y n

z AN
Scattering Object Measurement Plane
Fig. 1. The classical scanning geometry of spherical-wave 3-D DT. A

spherical-wave is incident at angle ¢, and the scattered field is measured in
the £—= plane positioned at 77 = D. The measurement angle ¢ is varied from
0to 27.

Fig. 2. Aplotofwv,, asa function of v; and v, as described by (17). The plot
was generated using \ = 0.7 and vy = 7.

Using paraxial' and weak scattering approximations, Devaney de-
rived [7] the spherical-wave FDP theorem that is given by

M(vpn. v:. 0)
o> == ” P
- / / a(F)e= 2 mADE [+ =) g

p 2 2 2.2
lf”m +V: S X Yo

=0 ifvd +vi>) . (6)

Equation (6) states that the modified data function, M(vm, v:, ¢),
is equal to a semi-ellipsoidal slice, oriented at angle &, through the
3-D Fourier transform of the object function a(7). As the measure-
ment angle ¢ is varied between 0 and 27, a certain low-pass coverage
of the 3-D Fourier space is specified (for details, please refer to refer-
ence [7]). In this paper, we assume the validity of the first-order Born
approximation; the spherical-wave FDP theorem can also be derived
based upon the Rytov approximation by appropriately redefining (3)
(7.

IThe paraxial approximation requires that both S and D are much larger than
the size of the scattering object.

_and
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Equation (6), coupled with a 3-D interpolation method, can be used
to implement a DF reconstruction algorithm. The 3-D FBPP algorithm
for plane-wave DT [8] can readily be extended to 3-D spherical-wave
DT [6] and is given by [9], [6]

N

v2 +r2<y? ug

m

Um 2
Lal [0 -2+ x']

- ’ . ’_
_)21r(um£——_;21ru“r,+v:.) dV,,, (llI: (7)

X MV, Vs, @)C

where

vy =i (\/ug T+ - ) .

III. E-C RECONSTRUCTION ALGORITHM

In deriving the E-C reconstructions algorithms for spherical-wave

. DT, we will modify the procedure employed for the derivation

of the plane-wave DT algorithms described in [4]. Let a(r, 8, =)
denote a 3-D scattering object function where 7 = /a® + y2,
6 = tan~'(y/z), and = denote cylindrical coordinates. The X-ray
transform, p(, z, ¢o), of a(r, 8, z) is defined as

p( =, @) = /

N=-—oc

oc

a(r, 0, z)dy (8)

where oo is the projection angle, £ = rcos(oo — 8) and
n = -rsin(¢o — 6). Equation (8) states that p(&, =, éo) is
the geometrical projection of a(r, 8, z) onto the £~z plane oriented
at angle ¢o about the z axis. Consequently, p(&, z, 0o) can be
interpreted as a stack of 2-D Radon transforms of a(r, 8, =) along the
= axis. The combination of a 2-D Fourier transform with respect to {
and z and a one-dimensional Fourier series expansion with respect to
oo of p(&, z, @0) is given by

1 2 o :
PilVa, v:) = 5 // p(&, =, 60)
T Je=0 y F=—00
x ¢~ I2mvaE—i2Tva=ikeo ge g2 dgo (9)

where the integer & is the angular frequency index with respect to ¢o,
andand v are the continuous spatial frequencies conjugate to § and
=, respectively. As a matter of convenience, we refer to Px(v., v.) as
the “3-D Fourier transform” of p(€, =, ¢o). Substituting (8) into (9)
and carrying out the integral over @o yields

oc . 2w =
Pi(va, v:) = (—J)k/ o I2Yez d:L / a(r, 6, z
zam—o0C =0 Jr=0
xe—jkeJk(Zﬂuar)rdrdG. (10)

Again, for convenience, we refer to My(vm, v:) = (1/2x)

f02 "MV, v:, ¢)e7%° do as the “3-D Fourier transform” of the

modified data function. Using (6) and noting that £ =  cos(¢ — 6)
and 7 = —7sin(é — ), one can obtain

M (v, v:)

oc o 27 oc
=/ (IR dz/ / a(r, 8, z)
r=—o0c =0 Jr=0

. v
x{L/ i ezmms;n(o—e)—j(k«s+2w£nrms<¢—"))dé}rdrde
27 Jo—o . '

(an
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where v2, + v? < \?¥2. Carrying out the integral [10] in the curly
brackets in (11), one can re-express M (v, v:) as

Mi(vm, v:)
k
1 oc . ,
= (-j)* Ym AV / e—i2mrls g
u:,? — Vﬁ r=—ec
27 oc .
X / / a(r,8,z)e % Ji (27”'\/1/;,;2 -2 ) rdrdé
8=0 Jr=0
(12)
where v2, + v? < X*44. ’
Comparison of (10) and (12) yields that for v7, + v <X}
Pi(va. 1) = [Y(¥Vrm, v Mi(m, v:) a3)
where
Vz =u:,;z - 1/3 (14)
and
v —v2
! I ] —
’Y(Vms V:) - '/;n + l/“ . (15)

The explicit forms of this general relationship in (13) are determined
completely by the forms of the relationship between va and vy implied
in (14). Equation (14) indicates that the condition v7, + v? < xX*vé
is equivalent to the condition vZ + V2 < v3(1+ 1/x?). In order to
determine v, as a function of v; and va, we must solve for the roots
of the fourth-order equation

Clt+Coll+Cs=0 (16)
where the coefficients C; are given by
Cr=(1-x%?%
Ca=2(1-1%) (21«3 -va— {—Z) +drgy®

2 2 V? 2 2 2 V?
Cy = 21/0—-1/"——-}(—; — 4y llo—;f—z- .

The four roots of (16) are given by

JESE——— R Y}
V:nl =_'V:11'2 = l:—C2 ks C2 — 4CxC:;j| a7

and

2C,

and

—Cs - \/C§—4CIC3]'/2 as)

! !
VYm3 = ~Vma = [ 2C1

Letvmi = vhix2,i = 1,2,3,and4. Forv2+v7° < v3(1+1/x%),the
two roots ¥/,5 and v, are complex-valued and, therefore, not physi-
cally meaningful. A plot of (17) is shown in Fig. 2. In the plane-wave
case {x = 1), there are only two roots that are given by [4]

2 2 1/2
Vm1 = —Vm2 = Vm = {(”3 + V?) [1_ Va4t2yz] - V?} (19)
0

where v2 + v2 < 202,

Therefore, for a given pair of v, and v, satisfying 0 < 4 <
vE(141/32),Pi(va, Vi) canbe obtained from Mi (v, ¥:) @t Vm1 =
vm and v; as

Pi(var 1) = [ (Vhnts VO Mi(vrms v:)
= (Vs VOV M (Wi, 22) 20)
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and also from My (Vrm, V) at Um2 = —Vy, and v: as

Py (va, V1) = [v(vm2, UM (V2. v:)
= (—l)k['y(ui,,, u:.)]_kl\lk(—u,,., v:). @n

The fact that there are two distinct ways to obtain P« (v,. v.) from the
measured data can be explained by the existence of a double coverage
of the scattering object Fourier space [7]. Ata given measurement angle
&, the spherical-wave FDP theorem relates the 2-D Fourier transform
of the modified measured data to the 3-D Fourier transform of a(7")
evaluated over a semi-ellipsoid oriented at angle ¢. As the measure-
ment angle ¢ is varied from 0 to 2, two overlapping coverages of the
Fourier space are generated, with each coverage producing one of the
relationships described by (20) or (21).

Equations (20) and (21) yield two identical values of Pi(va. vl)
when the measured data are consistent. However, when the measured
data contain noise, (20) and (21) will generally produce different values
of Pi(va, v.). These two values can be combined to obtain a final
estimate of Px(va, v.) that has a reduced noise level as

P (v, 1)) = wi(vm, v ) (Vs VI M (v, v:) ,
+ (1 - wk(Vms Vz))(_l)k[’)r(l/:nv y;)]_k"\Ik(-—Vm’yz) (22)

where wi(vm, v:) is a generally complex-valued combination coef-

ficient. The superscript “w” indicates that Pfc“’)(u,,, v.) is obtained
by use of a combination coefficient wi (Vm, ¥:). If M (vm. v:) and
M (—¥m, v:) are interpreted as a random variables, then for a given
wilVm, ¥:), (22) can be interpreted as an estimation method for ob-
taining the ideal sinogram. Because wx (¥m, ¥:) may be any com-
plex-valued function of vm, v and k, (22), in effect, represents an in-
finite class of estimation methods. An estimate of p(£, z, ¢o) can be
obtained by taking the 3-D inverse Fourier transform of Pt") (Va, V:).
For a fixed value of z, the filtered backprojection (FBP) algorithm of
X-ray CT can be employed to reconstruct the corresponding transverse
slice of a(r, 6, z) from p(€, z, o). We refer to the combination of
(22) to estimate Pf:'>(um, v.) coupled with the 2-D FBP algorithm to
reconstruct transverse slices of a(r, ¢, z) as a spherical-wave E-C re-
construction algorithm for 3-D DT.

1V. NUMERICAL RESULTS

We performed numerical simulations to demonstrate the spher-
ical-wave E-C reconstruction algorithm. We considered a mathematical
phantom comprised of two different (uniform) spheres whose 3-D
Fourier transforms were approximately bandlimited to a sphere of
radius v2vo. Our intention was not to test the validity of the weak
scattering (Born) condition (see the Discussion Section), but rather
to demonstrate that the spherical-wave E-C reconstruction algorithm
can accurately reconstruct the scattering object function from weakly
scattered data. We, therefore, employed (3) and (6), along with the
analytic expression for the 3-D Fourier transform of the spheres, to
calculate noiseless samples of u, (€, z, ¢) over a 128 x 128 detector
array at 128 view angles that were evenly spaced over 360°. In
generating the simulation data, we assumed a scanning geometry
with § = 100 (arbitrary units) and D = 104.0816 that, according
to (4), yields x = 0.7. In order to simulate the stochastic nature
of noisy scattered data, we created a second data set, 44(€,2,0),
where the measured scattered data were treated as samples of an
uncorrelated bivariate Gaussian stochastic process. When generating
i4(€, 2, ¢), the mean and variance parameters describing the real
(imaginary) component of the stochastic process were set equal to the
real (imaginary) values of the noiseless data u,(£, z,¢). Therefore,
at a given position (£, z, ¢) in the data space, the magnitude of noise
contained in the real and imaginary components of 4., (¢, z, ®) was
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()

Fig. 3. (a) True slices through the numerical phantom. Transverse slices
reconstructed from (b) noiseless and (c) noisy data using a spherical-wave E-C
reconstruction algorithm.

proportional to the magnitude of the real and imaginary components
of u, (&, z, &), respectively.

We reconstructed three transverse slices of the scattering object by
use of the spherical-wave E-C algorithm specified by wi (V. v:) =
1/2 in (22). It can readily be shown that when the data noise is uncor-
related, w = 1/2 is a statistically optimal choice in the sense that it
minimizes the variance of the estimate Pi"’) (va), which in turn, results
in a minimization of the global image variance? [4]. For more general
noise models, it is, in principle, possible to derive other optimal forms
for wi (¥, v:). The true images of the chosen transverse slices are
shown in Fig. 3(a). The images reconstructed from the noiseless data,
shown in Fig. 3(b), do not contain any artifacts and accurately repre-
sent the corresponding true slices shown in Fig. 3(a). The same images

~ reconstructed from the noisy data set are shown in Fig. 3(c). Out of cu-

riosity, we also reconstructed the same transverse slices by use of our
previously developed plane-wave E-C reconstruction algorithm (that
assumes the measurement geometry corresponds to X = 1) and the
noiseless data set. The reconstructed images, shown in Fig. 4, clearly
contain artifacts and distortions. This numerically demonstrates the im-
portance of properly accounting for the wavefield curvature in 3-D DT.

V. DISCUSSION

Previously, we developed a novel class of reconstruction algorithms
for 3-D DT using plane-wave sources. These algorithms, referred to as
plane-wave E-C reconstruction algorithms, had a significant computa-
tional advantage over the conventional 3-D FBPP algorithm, and unlike
the 3-D DF method, did not require an explicit 3-D interpolation in the
Fourier space of the scattering object.

2The global image variance is equal to the local variance of an image at a
point summed over all points in image space.

Fig. 4. Transverse slices reconstructed from the spherical-wave data function
(x = 0.7) using a plane-wave DT reconstruction algorithm. As expected, the
images contain distortions.

The use of a plane-wave source may not be feasible in many ex-
perimental situations, and it may be more convenient to interrogate the
scattering object using a diverging spherical wave that is produced by a
point source. In this paper, we have developed a class of spherical-wave
E-C reconstruction algorithms for DT using spherical-wave sources
and measurement geometries that satisfy the paraxial approximation
[7}. The spherical-wave E-C reconstruction algorithms can be viewed
as generalizations of the plane-wave E-C reconstruction algorithms,
and reduce to the plane-wave E-C algorithms in the special case x = 1.
The spherical-wave E-C reconstruction algorithms possess the same
advantages as their plane-wave counterparts. For example, to recon-
struct an N'? image volume the spherical-wave E-C algorithm requires
~N?log N numerical operations while the spherical-wave FBPP al-
gorithm described by (7) would require ~N*log N numerical opera-
tions. Unlike DF methods, the spherical-wave E-C algorithms do not
require an explicit 3-D interpolation in the Fourier space of the scat-
tering object.

The spherical-wave E-C reconstruction algorithms have been de-
veloped using the first-order Born (or Rytov) weak scattering approx-
imation. In certain applications, the weak scattering approximation
may not be valid and the reconstructed image may contain artifacts.
However, the spherical-wave E-C algorithms provide a natural frame-
work for the incorporation of higher-order scattering perturbation
approximations [11]}-{13] into the algorithms.
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A Comparison of Algorithms for Detection of Spikes in
the Electroencephalogram

Clement C. C. Pang, Adrian R. M. Upton, Glenn Shine, and
Markad V. Kamath*

Abstract—ldentification of the short transient waveform, called a spike,
in the cortical electroencephalogram (EEG) plays an important role during
diagnosis of neurological disorders such as epilepsy. It has been suggested
that artificial neural networks (ANN) can be employed for spike detec-
tion in the EEG, if suitable features are provided as input to an ANN. In
this paper, we explore the performance of neural network-based classifiers
using features selected by algorithms suggested by four previous investiga-
tors. Of these, three algorithms model the spike by mathematical parame-
ters and use them as features for classification while the fourth algorithm
uses raw EEG to train the classifier. The objective of this paper is to ex-
amine if there is any inherent advantage to any particular set of features,
subject to the condition that the same data are used for all feature selection
algorithms. Our results suggest that artificial neural networks trained with
features selected using any one of the above three algorithms as well as raw
EEG directly fed to the ANN will yield similar results.

Index Terms—Classification, EEG, neural networks, spike detection.

1. INTRODUCTION

Epilepsy is characterized by sudden recurrent and transient distur-
bances of mental function and/or movements of the body that result
from excessive discharging of groups of brain cells [10], [13]. Patients
who are suspected of having epileptogenic foci in their brain are
subjected to an electroencephalography (EEG) recording in the neu-
rophysiology laboratory. In clinical neurological practice, detection
of abnormal EEG activity plays an important role in the diagnosis of
epilepsy [10]. It is generally accepted that spikes (often called “spike
discharges™), a kind of transient waveform(s) present in human EEG,
have a high correlation with seizure occurrence. Therefore, detection
of spikes in the EEG plays a key role in the diagnosis of the disease.

Over the past several decades, physicians have developed empir-
ical techniques which help them identify episodes of abnormal signal
components, including the spike discharges. Such expertise has led to
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methods that mimic the mental process of the neurologist in identifying
spikes [5], [6], [17]. Research involving a variety of signal processing
algorithms has led to automated systems for analyzing and locating
spikes in EEG recordings lasting several hours [4], [14]. While it is de-
sirable to have detection of spikes and transient waveforms in contin-
uous on-line EEG, efficient algorithms for accurate off-line detection
of spikes and transient waveforms have been studied for some time [5],
[113, [141, [19], [21].

Previous implementations have approached the problem using
back-propagation [3], [11], [21] and Kohonen’s self-organizing maps
[12]. We examined four methods that use features derived from
wavelet transforms (WTs) [9], autoregressive (AR) modeling [18],
context parameters [20] and an ANN trained using raw EEG [15].
These algorithms were chosen specifically for this study due to their
high spike detection rates and their ability to reject false alarms.

II. METHODS
A. Definition of Spikes
Epileptic EEG contains transient waveforms called spikes (or spike
discharge) and includes the following types of waveforms (Fig. 1).
— Spike: lasts 20-70 ms.
__ Sharp wave: lasts 70~200 ms although not as sharply contoured
as a spike.
— Spike and wave complex : A spike is followed by a slow wave.
If they occur at rates below 3 Hz, they are called spike-and-slow
wave complexes.
— Polyspikes: Multiple spike complexes; several spikes occur in
sequence.
— Polyspike—and—slow wave: polyspikes followed by a slow
wave.
Fig. 1 shows examples of a spike, spike and a slow wave, polyspikes
in addition to normal EEG, and EEG contaminated by eye blinks and
muscle artifacts. :

B. Feature Extraction Algorithms

Mathematical modeling of spikes has enabled researchers a wide
range of methods to characterize a spike. We present four principal
procedures developed by previous researchers to achieve this purpose.

1) Tarassenko’s Algorithm: Tarassenko et al. [18] considered
both time-domain parameters and frequency-domain parameters for
the characterization of the EEG signal. The proposed time-domain
parameters are as follows (Fig. 2):

Average slope:
= ﬂf;-'—“—' (VA )
where s, = o —zo, s = - N0
L At At
and At = 7
Sharpness:
a=|si —so| [V/5’] €3]
Mobility:
2 1 s
(2nM)" = an? x—f (Hz] €]
Complexity:

2 1 (s1—s0)?

(27C)? = ((At)'z ( ~ ) ) _erMY 1] @

where, ., is the average amplitude of the signal within an epoch.
The latter two parameters, which were proposed by Hjorth [8] and

Walmsley [19], can be used to characterize the slope and slope spread
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ABSTRACT: It is widely believed that measurements from a full
angular range of 27 are generally required to exactly reconstruct a
complex-valued refractive index distribution in diffraction tomography
(DT). In this work, we developed a new class of minimal-scan recon-
struction algorithms for DT that utilizes measurements only over the
angular range 0 = ¢ = 37/2 to perform an exact reconstruction.
These algorithms, referred to as minimal-scan estimate-combination
(MS-E-C) reconstruction algorithms, effectively operate by transform-
ing the DT reconstruction problem into a conventional x-ray CT re-
construction problem that requires inversion of the Radon transform.
We performed computer simulations to compare the noise and nu-
merical properties of the MS-E-C algorithms against existing filtered
backpropagation-based algorithms. © 2002 Wiley Periodicals, Inc. Int J
Imaging Syst Technol, 12, 84-91, 2002; Published online in Wiley InterScience
(www.interscience.wiley.com). DOI 10.1002/ima.10014

Key words: topographic reconstruction; diffraction tomography;
wavefield inversion

1. INTRODUCTION

In diffraction tomography (DT), a scattering object is interrogated
using a diffracting acoustical or electromagnetic wavefield, and the
scattered wavefield around the object is measured and used to
reconstruct the refractive index distribution of the scattering object.
There are numerous potential applications of DT that can be found
in various scientific fields (Andre et al., 1995; Tabbara et al., 1988;
Mueller et al., 1979; Kino, 1979; Devaney, 1984; Robinson, 1984).
Recently, there has also been considerable interest in using DT to
perform coherent x-ray imaging using third-generation synchrotron
sources (Cheng and Han, 2001). Unlike the x-rays used in computed
tomography (CT) that travel along straight lines, the radiation em-
ployed in DT has to be treated in terms of wavefronts and fields
scattered by inhomogeneities in the object. In DT, the interaction
between the incident wavefield and the object medium is governed
by the inhomogeneous Helmholtz equation. Using a weak-scattering
approximation, the inhomogeneous equation can be analytically
solved (Wolf, 1969: Mueller et al., 1979) to obtain a linear relation-
ship between the scattered field and the refractive index distribution.
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neering, Ilinois Institute of Technology. 10 West 32nd Street. Chicago, IL. 60616-3793.
(V) 312-567-3926, (F) 312-567-5707, Email: anastasio@iit.edu.
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This relationship has been used to develop DT reconstruction algo-
rithms such as the well-known filtered backpropagation (FBPP)
algorithm (Devaney, 1982), which is a generalization of the filtered
backprojection (FBPJ) algorithm of x-ray CT.

It is widely believed that measurements from a full-angular
range of 277 around the scattering object are generally required to
exactly reconstruct a complex-valued refractive index distribu-
tion (Devaney, 1982). However, we have recently revealed that
one needs measurements only over the angular range 0 < ¢ =<
3m/2 to perform an exact reconstruction, and we developed
minimal-scan filtered backpropagation (MS-FBPP) algorithms to
achieve this (Pan and Anastasio, 1999). A useful characteristic of
the MS-FBPP algorithms is their ability to decrease the data
acquisition time by at least 25% over conventional (full-scan)
algorithms. They can also reduce artifacts due to movement in or
temporal fluctuations of the scattering object. Furthermore, in
certain practical situations, it may be impossible to acquire
measurements over a full 27 angular range.

A new class of reconstruction algorithms has recently been
developed for full-scan DT (in other words, DT employing mea-
surements over a full 277 angular range). These algorithms. referred
to as estimate-combination (E-C) reconstruction algorithms (Pan,
1998; Anastasio and Pan, 2000b; Anastasio and Pan, 2000a), effec-
tively operate by transforming the DT reconstruction problem into a
conventional x-ray CT reconstruction problem that can be efficiently
solved using the filtered backprojection (FBPJ) algorithm. The E-C
reconstruction algorithms are more computationally efficient than
the FBPP algorithm, and also provide a fiexible framework for
imposing unbiased regularization.

Because the E-C reconstruction algorithms involve a Fourier
series expansion of the data function that is acquired over the
angular range 0 < ¢ = 2, they cannot be applied directly to the
minimal-scan problem where measurements are only acquired over
the angular range 0 =< ¢ = 37/2. Because of the potential advan-
tages of the E-C reconstruction algorithms, it is important to gen-
eralize them to the minimal-scan situation. In this work, we devel-
oped minimal-scan E-C (MS-E-C) reconstruction algorithms for DT.
We performed computer simulations to compare the noise and
numerical properties of the MS-E-C and MS-FBPP algorithms. Our
results quantitatively demonstrate that the MS-E-C algorithms pos-




Incident plane wave

Figure 1. The classical scanning geometry of 2D DT. The insonifying
plane wave propagates along the 7 axis, and the scattered wave field
is measured along the line n = 1. Full-scan and minimal-scan data sets
are obtained by varying the measurement angle ¢ between Oand 27
or between 0 and 37/2, respectively.

sess statistical and numerical properties superior to those of the
MS-FBPP algorithms.

Il. BACKGROUND

A. The Fourier Diffraction Projection Theorem. In two-di-
mensional (2D) DT employing the classical scanning configura-
tion, as shown in Figure 1, the scattering object is illuminated by
monochromatic plane-wave radiation of frequency v, and the
transmitted wavefield is measured along the ¢ axis oriented at a
measurement angle ¢, at a distance n = [ from the origin. From
measurements of the scattered wavefield obtained at various
angles &, one seeks to reconstruct the scattering object function
a(P), which is related to the refractive index distribution n(r, 8) by
a(r. 8) = n*(r. 0) — 1.

At a measurement angle ¢. the scattered data are measured along
the line 7 = I, as shown in figure 1. Let U (v,,. ¢) to denote the
ID Fourier transform of the measured scattered data with respect to
£ For convenience, we define a modified 1D Fourier transform of
the scattered data as

Jv iy »
M(v,, &) = UV ) Tl € A (N
U Q

where v/ = Vv(z) - v,z,, and |v,,| = v, The quantities on the
right-hand side of equation 1 are known or can be measured.
Therefore, we will treat M(v,,, ¢) as a measurable data function.
Under the Born approximation (Mueller et al., 1979), the Fourier
diffraction projection (FDP) theorem (Mueller et al., 1979) can be
derived, which is mathematically stated as

]

—-%

= 0 if v, > v,
@

where the polar coordinates (r, ) and the rotated coordinates (£. 1)
are related through £ = r cos(¢ — 6) and n = —r sin(¢ — 6). The
FDP theorem indicates that M(v,,, ¢) provides the values of the 2D
Fourier transform of a(7) along the semi-circular arc AOB of radius
v, as shown in figure 2.

B. Minimal-Scan Filtered Backpropagation Algorithms.
The widely used filtered backpropagation (FBPP) algorithm (Dev-
aney, 1982) is mathematically expressed as

1 27 w v, N ,
a(f) = 3 f f v—(,) [Vl M( ¥,y )EF™E 2™ d, d .
=0 Y vp==m

3

where v, = j(V 2 =12, — vg). When v, — o, the FBPP
algorithm reduces to the filtered backprojection (FBPJ) algorithm of
x-ray CT. The FBPP algorithm generally requires full knowledge of
M(v,,. ¢) in the data space W = [|v,,| < v, 0 = ¢ = 2], for
exact reconstruction of the generally complex-valued object func-
tion. We will refer to such full knowledge of M(v,,, ¢) as a full-scan
data set. The full-scan data space W can be decomposed into four
subspaces, 4, B, €. and @, where f = [|v,| = v,. , 0= ¢ =
20+ w2, B=1v)=vo. W2 +2a=<¢=7+ 2a] €
= vl = v 7+ 2a=¢=3w2]and D = [|v,| = v,
3m/2 = ¢ < 27), where a = s,gn(v,,,)arcsin\/v,,,2 - vi/(2v,,). A
schematic of this partitioning of the data space is given in figure 3.
Using the FDP theorem, it can be shown (Pan and Kak, 1983) that
M, &) = M(—v,. ¢ + T — 2a). Therefore, the information
contained in subspace & is redundant to that contained in subspace
<¢, and the information contained in subspace 3 is redundant to that
contained in subspace @. We have demonstrated (Pan and Anasta-
sio, 1999) that it is possible to exactly reconstruct the object function
using only knowledge of M(v,,, ¢) in the subspace M = sl U &

oy Vm
4
/
/
/
/
{ A
/
¢
/ ° Vg
/
/
/
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/ \
B

Figure 2. The FDP theorem states that M(v,,, ¢) is equal to the 2D
Fourier transform of a(f) along a semi-circle AOB that has a radius of
v and is centered at v, = ¥,
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Figure 3. The subspaces s, B, ¢ and 9 in the complete DT data
space.

U %€ = v, < vy 0= ¢ = 3n/2], which we refer to as a a
minimal-scan data set.

Although the minimal-scan data set AL contains all of the infor-
mation necessary for exact reconstruction of the scattering object
function, the redundant information contained in the subspaces &
and € needs to be properly normalized in the reconstruction process
(Pan and Anastasio. 1999). The MS-FBPP algorithms operate by
first normalizing such partially redundant information by generating
an appropriately weighted minimal-scan data set M'(»,,,. ¢) and
subsequently using the FBPP algorithm described by equation 3
(scaled by a factor of 2), to exactly reconstruct the image. The
weighted minimal-scan data set is given by (Pan and Anastasio,
1999)

M' (v, $) = w(v,. S)M(v,, b), 4
where w(v,,. ¢) is a function of v,, and ¢, which satisfies
w(v,, ¢) + w(—v,. ¢+ m—2a)=1 (5a)
in complete data space W,
w(V, @) =1 (5b)
in subspace 8. and

w(v,. ¢) =0 (5¢)

86 Vol. 12, 84-91 (2002)

in subspace . Although the forms of w(v,,, @) in subspaces R and
@ are completely specified by equations 5b and 5c, respectively, the
explicit forms of w(v,,.. @) in subspaces o and 6 are unspecified for
the moment. In principle, one can choose different w(v,,. ¢} in
subspaces s and 6 as long as these w(v,,, ¢) satisfy equation Sa.

Ill. MINIMAL-SCAN ESTIMATE-COMBINATION
ALGORITHMS ‘

The previously derived (full-scan) E-C reconstruction algorithms are
more computationally efficient than the (full-scan) FBPP reconstruc-
tion algorithms, which involve a depth-dependent filtering operation
(backpropagation). Accordingly, we expect that the MS-FBPP algo-
rithms, which use the FBPP algorithm to reconstruct the final image
from the weighted data function M'(v,,, ¢), will also be less
computationally ‘efficient than the E-C reconstruction algorithms.
Because they will involve fewer and less complicated numerical
operations, we also expect that the MS-E-C algorithms will be
minimize the propagation of data noise and errors as compared to
the MS-FBPP algorithms. The full-scan E-C reconstruction algo-
rithms (Pan, 1998; Anastasio and Pan, 2000b) involve a Fourier
series expansion of the data function M(v,,, ¢), which requires
knowledge of M(v,,, &) over an angular range of 2, and therefore
can not be directly applied to the minimal-scan data set containing
only measurements in the range 0 < ¢ =< 3/3. Below, we develop
minimal-scan E-C (MS-E-C) reconstruction algorithms that can be
directly applied to the minimal-scan data set.

A. The Radon Transform. Let p(§, ¢) and P,(v,) denote the
Radon transform of a(r, 6) and its 2D Fourier transform, respec-
tively. (Here. the 2D Fourier transform is actually a 1D Fourier
transform with respect to ¢ and a 1D Fourier series with respect to
¢.) From knowledge of p(£, ¢). or equivalently, P,(v,), one can
reconstruct a(r, ) by use of the computationally efficient and
numerically stable FBPJ algorithm, which is given by

1 20 oo ¥ ) ) '
a(r, 6) = 7 f 2 Pve™|v fe =0 dy, d¢.
o

oo k==

(62)

For theoretical convenience, the FBPJ algorithm can also be ex-
pressed as

a(r, ) =2 2 j‘J P(vye* 1 (2mv,r)v, dv,. (6b)

ki o V=0

where J,( - ) is a Bessel function of the first kind. The MS-E-C
algorithms will operate by estimating P,(v,), or equivalently p(&,
¢). from the minimal-scan data set, and using the FBPJ algorithm to
reconstruct the final image a(r, 8).

B. Derivation of the MS-E-C Algorithms. Consider a given
weighting function w(v,,, ¢) in equation 4. The. corresponding
MS-FBPP algorithm can be expressed as (Pan and Anastasio, 1999) |

1 2 w v
a(r, 6) = EJ j —v—‘,) [Vl M (v, D)™™ dy, d.
¢=

0 Y vm=—mw

)




Let M!(v,,) denote the Fourier series expansion of M'(v,,, ¢). One
can re-express equation 7 as

a(r. 6)

1 2r w Vo - _
= J 7 lvaleRmeeimn 3 Mi(v,)et dv,, dé.
-

k-—=

)

Using the definition y(v,,) = €’* and separating the contribution to

the integral from positive and negative v,,. equation 8 can be

re-written as

i 2 w Vo . =
a(r. 8) =3 J' f =3 v e PreEr Ttk B Mi(v,,) dv, dd

14
$=0 Y =0 k==
1 27 0 vy ) .
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Changing v,, to — v,, in the second term in equation 9 and grouping
¢-dependent terms yields

1 L] Vo 2= .
a(r, 9) = i_ _'7 v, eflrrv,,,{+21rvur|+/k¢ d¢

¢=0

=0

* ’ 1 k13 oy,
X >, Miv,) dv, + 3 o7 Vm

¢=0 m=0

k=—x
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x f e metmtit g\ S Mi(=v,) dy,. (10)
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The integrals in the curly braces of the first and second terms of
equation 10 can be evaluated (Metz and Pan, 1995) yielding the
expressions 27 y (v, e T R VVE — V) and
27— D4 y(w,) %™ 1, (2mrVvZ, — %), respectively. Using
this result and the change of variables v, = Vv, — v, (which
implies v,dv, = vo/v' v,dv,). we arrive at

ar O)=m 3 } f T M) + (= Dy M= )

k= 1=0

x e, 2y, v, dv,, (11)

where v, = v,VI1 — v,/ 2v02. Comparison of Eqns. 11 and 6b
indicates that, for 0 < v, = V2,

. :
Pyv,) = 5 [¥YMi(v.) + =Dy *Mi(=va)l 12)

and therefore the Radon transform of the scattering object function
a(r, @) can be estimated from the appropriately weighted minimal-
scan data set. The use of equation 12 to estimate P (v, coupled with
the 2D FBPJ algorithm to reconstruct a(r, 0) is referred 1o as a
MS-E-C reconstruction algorithm. In practice, the FBPJ algorithm
described by equation 6a requires knowledge of P,(v,) for evenly
spaced values of v, spanning the range 2y =v, = V2 Vo
in order to be efficiently implemented using the fast Fourier trans-
form (FFT). In this case, the consistency condition (Deans, 1983)
Puv,) = (~1)*P,(—v,) can be employed to obtain values of
P,(v,) for negative v,,.

IV. NUMERICAL SIMULATIONS

We performed simulation studies to evaluate and compare the nu-
merical and statistical properties of images obtained by use of the

MS-E-C and MS-FBPP reconstruction algorithms.

A. Measurement Data. We investigated the statistical proper-
ties of the reconstruction algorithms under near-ideal conditions by
employing a single component scattering object that exactly satisfied
the (first-order) Born approximation. The propagation of determin-
istic artifacts by the reconstruction algorithms under less-than-ideal
conditions was investigated by employing a two component scatter-
ing object that introduced strong and multiple-scattering effects into
the measurement data. )

A.l Single-Scattered (Born) Data and Noise Model. The scat-
tering object function. shown in figure 4, was taken to be a lossless,
uniform cylindrical disk with a diameter of 30 pixels that was
convolved with a symmetric Gaussian function with a standard
deviation of 0.2 pixel. The Fourier transform of the object function
was therefore approximately bandlimited to a circular disk of radius
/2 v, in its 2D Fourier space. It was assumed that the scatterer was
weakly scattering. so that the Born approximation may reasonably
be taken to hold. Therefore, these numerical simulations were de-
signed to investigate the statistical properties of the reconstruction
algorithms rather than the weak scattering model. Minimal-scan data
sets were generated by using the FDP theorem to calculate simulated
scattered field data for 96 measurement angles ¢ that were evenly
spaced between O and 3m/2. At each measurement angle. 128
samples were calculated with a sampling increment A§ = 1/2v,.
where v, is the frequency of the incident plane wave.

Figure 4. The original scattering object function was formed by
convolving a uniform circular disk with a diameter of 30 pixels with a
circularly symmetric Gaussian function with a standard deviation of
0.2 pixels.
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{a}

Figure 5. Images reconstructed from noiseless data using the (a)
MS-E-C and (b) MS-FBPP reconstruction algorithms.

To simulate the effects of data noise, we treated the scattered data
u,(£, ¢) as a complex stochastic process with a real and an imag-
inary component denoted by, u{”(£, $) and ui”(§, ), respectively.
Letul” = u® + Aul” and u = 4" + Aul”, where u” and u®
are the means of u{” and u'”, respectively. The statistics of the
deviates Aut” and Au!” are described by the circular Gaussian

model:
1 y 1 (Au")’ N Aut” 3
moo, ORI T2\ a /| a3

where o2 and a2 are the variances of Aul"(¢, ¢) and AuC(E, @),
respectively.

A.2 Multiple-Scattered Data. To investigate the impact of
strong and multiple-scattering effects on the performance of the
MS-E-C and MS-FBPP algorithms, which implicitly assume weak
scattering conditions, we employed the two component scattering
object shown in figure 8. This scattering object was composed of
two uniform cylinders with radius 3\ whose centers were separated
by 7A. (A = wavelength of incident plane wave.) The refractive
index values of the cylinders were varied as described below.
Twersky’s theory of multiple scattering (Ishimaru, 1978) was used
to calculate measurement data that contained second-order scatter-
ing effects. The first-order contributions to the measurement data
were obtained by considering the interaction of the incident plane-
wave with each cylinder. assuming the other cylinder to be absent.
Note that this was an exact calculation that did not rely on the Born
approximation. The second-order contributions to the measurement
data were obtained by calculating the scattering component created

p(Au”, Au') =

(a) )]

Figure 6. Images reconstructed from noisy and weakly scattered
data using the (a) MS-E-C and (b) MS-FBPP reconstruction algo-
rithms. The noisy data were generated using o, = v; = 0.5in Egn. 13.
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Figure 7. A plot of the local variance obtained from the MS-FBPP
reconstructed images divided by the local variance obtained from the
MS-E-C reconstructed images.

when the incident wave interacts with one cylinder and subsequently
scatters off of the second cylinder before being measured (Azimi
and Kak, 1983). Minimal-scan data sets were generated containing
96 measurement angles ¢ that were evenly spaced between 0 and
3m/2. At each measurement angle, 128 samples were calculated with
a sampling increment A§ = 1/2y,,.

B. Implementation Details. Both the MS-E-C and MS-FBPP
reconstruction algorithms require the computation of the weighted
minimal-scan data set that is defined in equation 4. This was ac-
complished by using the weighting function

{

1 T
E:OSd)S-E*i‘Za
1:;—+2as¢51-r+2a
w, 6) =\ 3 (14)
§:w+2a5¢57

kY d

0:—2-'5(155271‘,

Figure 8. The geometry of the two component scattering object. We
considered the cases where the refractive index of the uniform cylin-
ders took the values n{f) = 1.01, 1.05, and 1.08.




where |v,| < v,. This weighting function satisfies the requirements
described by equation 5.

MS-E-C Algorithm. From the uniformly sampled values of the
scattered field u (&, ¢), M, (v,,), and hence M(v,,), can be deter-
mined at uniformly spaced values of v,,. (This calculation can be
performed using the FFT algorithm.) However, the uniformly
spaced values of v, at which M}(,,) is known do not generally
correspond to the uniformly spaced values of v, = V vE - vi at
which we are required to evaluate P,(v,). For each of 65 evenly
spaced values of v, spanning the range 0 = v, = V2 v,, we used
linear interpolation to determine the values of M, (v,
V2 + vi) and M, (v,,= -V v vi) from the sampled values
of Mi(v,,) and M}(—v,,), which were subsequently used in equa-
tion 13 to evaluate P,(v,). For each value of k. zero-padding
interpolation was employed to increase the sampling density along
the v,, axis of M;(v,,) by a factor of three in order to increase the
accuracy of the interpolation operation. The consistency condition
Pv,)=(— 1)¥P,(—v,) was employed to obtain the 64 samples of
P,(v,) for v, spanning the range -V2 v, = v, < 0. In our
implementation of the FBPJ algorithm, an unapodized ramp filter
was used. The interpolation necessary to align the backprojected
data onto a 128X 128 pixel discrete image matrix was performed
using bilinear interpolation.

MS-FBPP Algorithm. In the MS-FBPP algorithm, at each mea-
surement angle é. M(v,,, ¢) was multiplied by the depth-dependent
filter vo/v' |v,,]e2™**™ for each of 128 discrete values of n. For each
value of 7, the filtered data was zero-padded to a length of 182
samples. upon which the inverse FFT was employed to transform the
filtered data to the corresponding depth (value of ) in image space.
This ensured that the pixel size of the images reconstructed using the
MS-E-C and MS-FBPP algorithms were equivalent. The interpola-
tion necessary to align the backpropagated data onto a 128X128
pixel discrete image matrix was performed using bilinear interpola-
tion.

C. Simulation Studies

C.I Single-Scattered (Born) Data Case. To study the noise
properties of the reconstructed images quantitatively, we utilized the
noiseless data set described in Section IV-A.1 along with the noise
model in equation 13 with o, = o; = 0.5 to generate N = 250
noisy minimal-scan data sets. The MS-E-C and MS-FBPP algo-
rithms were used to reconstruct sets of 250 noisy images from these
noisy minimal-scan data sets. The local image variance was calcu-
lated empirically from the N sets of reconstructed images as

{a) (b}

Figure 9. Images of the two component scattering object corre-
sponding to n{f) = 1.01, reconstructed by use of the (a) MS-E-C and
(b) MS-FBPP reconstruction algorithms.

) [CH

Figure 10. Images of the two component scattering object corre-
sponding to n(f) = 1.05, reconstructed by use of the (a) MS-E-C and
(b) MS-FBPP reconstruction algorithms.

1 [« (& Y
Var{a(?)}=,T,_—1(Za.-(;)2—ﬁ(2a.~m) N0

where a,(7) is the ith image obtained with either the MS-E-C or
MS-FBPP reconstruction algorithm.

C.2 Multiple-Scartering Case. To assess the impact of multiple-
scattering effects on the performance of the MS-E-C and MS-FBPP
algorithms, we employed the two component scattering object de-
scribed in Section IV-A.2. We considered the three cases where the
cylinders had refractive index values of n(¥) = 1.01, 1.05, and
1.08. For each value of n(7), we used the MS-E-C and MS-FBPP
algorithms to reconstruct the image from the corresponding data set.
The percentage of cumulative error in the reconstructed images was
quantified using the metric

J- la() — anF)* d7

RO!
Egor =
f | (P A7
ROI

X 100, (16)

where a,,,.(F) is the true scattering object function and the subscript
‘ROT" denotes that the error was calculated over a 64X64 pixel®
region of interest containing the scattering objects.

() : (b}

Figure 11. Images of the two component scattering object corre-
sponding to n() = 1.08, reconstructed by use of the (a) MS-E-C and
{b) MS-FBPP reconstruction algorithms.
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Table L. Error values of the reconstructed images shown in Figs. 9-11.

Contrast MS-E-C Error MS-FBPP Error
1.01 12.03 13.68
1.05 51.26 53.70
1.08 115.25 119.13

V. RESULTS

A. Single-Scattered (Born) Data Case. We first used the MS-
E-C and MS-FBPP algorithms to reconstruct the scattering object
function using the simulated noiseless minimal-scan data set. The
images reconstructed using the MS-E-C and MS-FBPP algorithms
are displayed in figures 5a and 5b, respectively. It is observed that,
in the absence of noise, both the MS-E-C and MS-FBPP algorithms
can. with high fidelity, reconstruct the original scattering object
function from the minimal-scan data set.

Using one of the noisy minimal-scan data sets, we used the
MS-E-C and MS-FBPP algorithms to reconstruct the scattering
object function. The noisy images reconstructed using the MS-E-C
and MS-FBPP algorithms are displayed in figures 6a and 6b. re-
spectively. The image reconstructed using the MS-E-C algorithm
(Fig. 6a) appears less affected by the data noise and more closely
resembles the original object than does the image reconstructed
using the MS-FBPP algorithm (Fig. 6b). The local image variance,
which was empirically calculated from the two sets of 250 noisy
images reconstructed using the MS-E-C and MS-FBPP algorithms,
quantitatively confirms this observation. Figure 7 is a plot of the
local variance obtained from the MS-FBPP reconstructed images
divided by the local variance obtained from the MS-E-C recon-
structed images. Clearly, the ratio of the variances is everywhere
greater than one, and near the corners of the reconstructed image is
as great as ten. This quantitatively demonstrates that the MS-E-C
reconstruction algorithms are less susceptible to the effects of data
noise than are the MS-FBPP reconstruction algorithms.

B. Multiple-Scattering Case. Using the MS-E-C and MS-
FBPP algorithms we reconstructed the two component scattering
objects shown in figures 9—11. which correspond to the cases where
the cylinders had refractive index values of n(r) = 1.01, 1.05, and
1.08, respectively. In each case, the image reconstructed by use of
the MS-E-C algorithm (Figs. 9a~11a) appears to contain less pro-
nounced artifacts than does the image reconstructed by use of the
MS-FBPP algorithm (Figs. 9b—11b). This observation is confirmed
by Table I, which shows that for each value of n(7) the MS-E-C
algorithm produced images that have lower error values than the
corresponding images produced by the MS-FBPP algorithm. This
quantitatively demonstrates that the MS-E-C algorithms are less
susceptible to multiple-scattering effects and other deterministic
inconsistencies than are the MS-FBPP algorithms. However. as one
would expect, the performance of both algorithms dramatically
deteriorates as the refractive index values increases and the Born
condition (Chen and Stamnes, 1998) is severely violated.

VI. DISCUSSION

Previously we have shown (Pan and Anastasio. 1999) that, in DT
employing the 2D classical scanning geometry, the minimal-scan
data set acquired using view angles only in [0, 377/2] contains all of
the information necessary to exactly reconstruct the scattering object
function. We subsequently developed a class of MS-FBPP algo-
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rithms that were capable of exactly reconstructing the scattering
object function from the minimal-scan data set.

In this work. we have developed a novel class of reconstruction
algorithms for the minimal-scan DT reconstruction problem. These
algorithms. referred to as MS-E-C reconstruction algorithms, have
distinct advantages over the MS-FBPP reconstruction algorithms.
Because the FBPJ algorithm used by the MS-E-C algorithms does
not involve a depth-dependent filtering, the MS-E-C algorithms are
more computationally efficient than are the MS-FBPP algorithms.
More importantly, we have quantitatively demonstrated that the
MS-E-C algorithms are less susceptible to data noise, modeling
errors due to the violation of weak scattering conditions, and other
finite sampling effects than are the MS-FBPP algorithms. This result
is consistent with the observation that the MS-FBPP algorithms
involve more complicated numerical operations than do the MS-E-C
algorithms, which may amplify the propagation of noise and errors
into the reconstructed image. Therefore, the use of a MS-E-C
algorithm instead of a MS-FBPP algorithm (using the same weight-
ing function) will generally result in a reduction of the reconstructed
image variance and/or a reduction of the image artifacts.

Recently, non-linear reconstruction algorithms that incorporate
higher-order scattering approximations have been proposed for full-
scan DT (Lu and Zhang, 1996; Tsihrintzis and Devaney, 2000b;
Tsihrintzis and Devaney, 2000a). The generalization of these works
to case of minimal-scan DT is an important task that is currently
under way.
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On a Limited-View Reconstruction Problem in Diffraction
Tomography

Xiaochuan Pan* and Mark A. Anastasio

Abstract—Diffraction tomography (DT) is an inversion technique that
reconstructs the refractive index distribution of a scattering object. We pre-
viously demonstrated that by exploiting the redundant information in the
DT data, the scattering object could be exactly reconstructed using mea-
surements taken over the angular range [0, ¢minl, Where ®# < @min <
37 /2. In this paper, we reveal a relationship between the maximum scan-
ning angle and image resolution when a filtered backpropagation (FBPP)
reconstruction algorithm is employed for image reconstruction, Based on
this observation, we develop short-scan FBPP algorithms that reconstruct
a low-pass filtered scattering object from measurements acquired over the
angular range [0, |, where 2° < @umin.

Index Terms—Diffraction tomography, limited-view tomography, wave-
field inversion techniques.

1. INTRODUCTION

In diffraction tomography (DT), a semi-transparent scattering ob-
ject is interrogated using a diffracting optical or acoustical wavefield
and the scattered wavefield around the object is measured and used to
reconstruct the (low-pass filtered) refractive index distribution of the
scattering object. The principles of DT have been extensively utilized
for developing optical and acoustic tomographic imaging systems. Re-
cently, interest in DT within the optical imaging community has in-
creased because of its potential application to the diffuse-photon den-
sity wave tomography [1]-[3].

It was shown previously [4], [5] that, in two-dimensional (2-D) DT
employing plane-wave or cylindrical-wave sources and the classical
scanning geometry, one can reconstruct the scattering object from a
minimal-scan data set comprised of measurements acquired over the
angular range [0, émin], Where 7 < Omin < 37/2 is specified by
the measurement geometry. In this paper, we reveal a relationship be-
tween image resolution and maximum scan angle, based upon which
short-scan algorithms can be designed for reconstructing a low-pass
filtered scattering object from measurements acquired over the angular
range [0, ®°], where ®° < Omin. When the scattering object is suf-
ficiently bandlimited, it can be exactly reconstructed from the lim-
ited-view measurements in [0, $°]. We present numerical examples
that confirm our theoretical assertions.

II. BACKGROUND

Consider the classical scanning geometry of DT with a cylin-
drical wave source, as shown in Fig. 1. Let (z,y) and (v,6)
denote the fixed Cartesian and polar coordinate systems and
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Fig. 1. The fan-beam scanning geometry of 2-D DT. The interrogating
cylindrical wave propagates along the 7 axis and the scattered wave field is
measured along the line 7 = 1. S (or D) denotes the distance between the
source (or the detector) and the center of rotation.

(€.7) the rotated coordinate system. These systems are related by
r = rcosb, y = rsinf, £ = zcosd + ysing = rcos(¢ — ), and
n = —xsing + ycosg = —rsin(¢ — 6). The scattering object, which
is embedded in a lossless and homogeneous background medium,
is illuminated by a monochromatic cylindrical-wave u;(§, ) with
complex amplitude Uo and wavenumber k¥ = 2wuo, generated by
a line source located at the position 7 = —S on the # axis. From
measurements of the scattered wavefield on the £ axis at different
view angles &, one seeks to reconstruct the scattering object function
a(7), which is related to the refractive index distribution n(7) within
the scattering object by a(7) = n?(7) — 1.

Let u(€, ¢) and u, (€, ¢) = u(€, @) — ui(€, ¢) denote the total and
scattered wavefields measured along the line = D oriented at angle
¢, as shown in Fig. 1. For the sake of convenience, we introduce a
modified data function M (v, @) that can be obtained readily from
the scattered wavefield and is defined as

.'1/1(”"“ é) = w—ifu'exp [—-j27l'(lll - ”O)D] ]:Vm {Za((g)j;} (l)
5 1 Y

where v = /5/(S+ D), v' = /v —vi/x? and F., {h(§)} =
1/(27) [=_ h(€)e™727m¢dE. The special case of plane-wave illumi-
nation (§ — oo) corresponds to x = 1. Under the Bom and paraxial
approximations, Devaney derived the fan-beam Fourier diffraction pro-
jection (FDP) theorem [6], which relates a(7) to the modified data
function by

. exp {—j?n’ [i’—;f — (V' = w) n]}dr",

if |vm| <xvo

=0 if |m| > xVvo- )
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The FDP theorem can also be derived by employing the Rytov
approximation. In this case, (2) remains unchanged and only (1) needs
to be appropriately redefined [6]. When ¢ is varied from 0 to 2, the
FDP theorem specifies a circular disk of (double) coverage centered
at the origin with radius vo1/1+ 1/x? in the 2-D Fourier space of
a(7). Conventional full-scan reconstruction algorithms, such as the
well known filtered backpropagation (FBPP) algorithm [7], utilize this
Fourier space coverage for reconstructing a(7). We will refer to such
a (low-pass filtered) reconstructed a(F) as the “exact” image.

According to the fan-beam FDP theorem in (2), the modified data
function M (v,.. 6) satisfies the consistency condition [4]

&)

1/2

M (Um,0) = M (~Vm, ¢+ 7 = 20)

where sina = sgn(um) [((v = vo)?/ (VR /X*) + (v = v)?)]
Using (3), one can show [4], [5] that the minimal-scan data acquired
in the angular range [0, min] specifies a circular disk (with radius
voy/1+ 1/x?) of coverage in the Fourier space of a(7), where

1

Omin =T+ 26 and sind = ———.
1+

IIL. A LIMITED-VIEW RECONSTRUCTION PROBLEM FOR 2-D DT

@

We focus now on a limited-view problem, in which data are acquired
only over the angular range [0, ], where ™ < ®° < Pmin. In this
situation, it is well known that the exact image cannot, in general, be re-
constructed [8]. However, we demonstrate that algorithms can be devel-
oped for reconstructing a low-pass filtered approximation of the exact
image. Consider a scattering object (7) whose 2-D Fourier transform
A°(?) is bandlimited to a disk of radius R. centered at the origin, where

2 2
R (ve) = (%}) + |y/vE - (5\5) -w

and 0 < v. < xvo. Then, according to the fan-beam FDP theorem
in (4), the modified data function A (v, ) is nonzero only for
|vm| < ve. The data space We = [lvm| Sve,0< 6 < 27), in
which the modified data function M(v..,d) is defined, can be
divided into the four subspaces A, B, C, and D, as shown in
Fig. 2, where A = [lvm| <v.,.0<6< 20(¥m) + 2a(v.)],
B = [[ml < ve20(vm) +20(v) < 6 < 7+ 2a(vm)),
C = [lom| € Ve, m+ 20(vm) < 6 < &°],  and
D = [[vm| < ve, 8¢ < ¢ < 2. The value of & is determined by

(6)

2q1/2

)

P =7+2a(v).

Using (3), it can be verified that information of M (vm, 8) in subspace
A is redundant to that of M(vsn, ) in subspace C. Similarly, infor-
mation of M (v, &) in subspace B is redundant to that of M (v, o)
in subspace D. Therefore, in principle, the modified data function
M(v,.. ) is completely specified by its values in the subspaces A
and B. However, because the boundary between the subspaces B and
C is a noniinear function of v,» and ¢ and because each horizontal
line in W. corresponds to a measurement acquired at a particular
angle o, the information in subspaces BB and C cannot in practice be
determined independently of each other. Consequently, in order to
determine M (v, ¢) in subspaces A and B, it is necessary to scan
the union AU BU C = [[vm| € ¥, 0 < ¢ < ®°]. This observation
can also be understood by examining the 2-D Fourier space coverage
of a(7) that is obtained by varying the scanning angle from 0 to °.
As shown in Fig. 3, although the disk of Fourier space coverage with
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Fig. 2. The full-scan data space W* = AU B UC U D contains data in the
angular range [0, 27]. The subspace AU B U C in [0, &<] contains all of the
information ncessary for exact reconstruction of the scattering object function
whose 2-D Fourier transform is bandlimited to a disk of radius R.(v.).

2\
Y

"Fig.3. The2-D Fourier space coverage of the scattering 6bject that is obtained

R = vo\/1 + 1/x? isincomplete, with the shaded region denoting the missing
data. However, the coverage corresponding to the disk of radius R., which is
defined by (5), is completely specified. In generating the figure, dc = 230°
and x = 1 were utilized. )

by varyin; o from 0 to ®°. The disk of Fourier space coverage with radius

radius R = vo/1 + 1/x? is incomplete, the coverage corresponding
to the disk of radius R.(v.) is completely specified. Therefore, in
order to exactly reconstruct a®(7*) whose 2-D Fourier transform
A°(7) is bandlimited to a disk of radius Rc(v.), only measurements
corresponding to view angles in [0, $°] are required. Alternatively,
for an arbitrary scattering object a(7) and specified ®° > =, one
can readily reconstruct a®(7), which is a low-pass filtered version of
a(7) whose 2-D Fourier transform is bandlimited to the disk of radius
R.(v.), where the value of the data cutoff frequency 0 < ve < X0
is determined by (6).

A plot of ®° versus v, /vq for plane- and cylindrical-wave illumina-
tion is shown in Fig. 4. As expected, the maximum scanning angle °
is a monotonically increasing function of the data cutoff frequency ve.
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Fig. 4. A plot of &< versus v.[Jve for x = 1 (solid line) and x = 0.5 (dashed line).

The nonlinear shape of the curves indicates the scanning angle can be
reduced from Smin (€.2., by 30°) with little loss of resolution in the re-
constructed image. Also, the fact that the plane-wave (x = 1) curve is
everywhere higher than the cylindrical-wave (x = 0.5) curve reflects
the fact that the angular scanning requirements of plane-beam DT are
more restrictive than for fan-beam DT [5].

IV. SHORT-SCAN RECONSTRUCTION ALGORITHMS FOR LIMITED-VIEW
DT

Although the data A U B U C in Fig. 2 contains all of the informa-
tion necessary for reconstruction of a*(), subspaces .A and C contain
redundant information that needs to be properly normatized in the re-
construction process. This can be achieved by introducing a weighted
modified data function as [4], [5]

M (vm.0) = 0 (Vm,d) M (Vm, @) N

where w(v,,.. o) satisfies

wW(Wm-8) + w(=Vm,0+7—2a) =1 (8a)
everywhere in the data space W,
w(vm,¢) =1 (8b)
in subspace B and
w (Um,0) =0 (8c)

in the subspace {D U {|vm]| > v.,0 < ¢ < 2n]}. The image a“(¥) can
be reconstructed using a short-scan FBPP (SS-FBPP) reconstruction
algorithm given by

() — @< pre Vo 1
a (Tvg)— _,|Vm|M (an»¢)
o) Jym=—v, v

/ 2
X exp [an sgn (Vm) % +(v' = wo)?reos(o— a— 6)]

X dvpmdo ®

which reduces to the full-scan fan-beam FBPP algorithm [5] when
& = 2 and w(vm,d) = 1/2. Note that different choice for
w(vn.0) that satisfy (8), in effect, specify different SS-FBPP
algorithms.

V. NUMERICAL RESULTS

To validate the theoretical results above, we considered a numerical
phantom containing two elliptical disks whose 2-D Fourier transform
was approximately bandlimited to a disk of radius Rc(ve = 0.4519)
[see (5)]. Data sets of simulated scattered fields were generated using
the plane-wave FDP theorem (i.e., x = 1) and using various values for
&°. We reconstructed images, which are shown in Fig. 5, from these
data sets using the conventional FBPP and SS-FBPP algorithms. The
SS-FBPP algorithm was specified by a weighting function w(vm, ¢)
that took on the values 1/2, 1, 1/2, and 0, in the data subspaces A, B, C,
and D, respectively. Fig. 5(a) shows images reconstructed by use of
the FBPP algorithm (left) and SS-FBPP algorithm (right), using data
sets cotresponding to ¢ = 27 and ®° = min(x = 1) = 37/2,
respectively. It is observed that both images appear virtually identical,
reflecting the fact that both of these data sets contain the complete in-
formation about the scattering object.

Fig. 5(b) shows images reconstructed by use of the FBPP algorithm
(left) and SS-FBPP algorithm (right), using a data set corresponding
to ®° = 7 + 2a(0.45v0) (= 207°). Clearly, the image reconstructed

using the FBPP algori‘thm is distorted and contains artifacts. However,
the image reconstructed by use of the SS-FBPP algorithm appears cor-
rect and virtually identical to the images shown in Fig. 5(a). This con-
firms our assertion that the SS-FBPP algorithms, which utilize in the
angular range [0, $°], can exactly reconstruct a scattering object a“(7)
whose 2-D Fourier transform A°(#) is bandlimited to a disk of radius
R.(v.), where v. and ®° are related by (6).

Fig. 5(c) shows images reconstructed by use of the FBPP algorithm
(left) and SS-FBPP algorithm (right), using a data set corresponding to
&° = 7 + 2a(0.2510)(= 195°). Note that because the 2-D Fourier

 transform of a(7) has support on the disk or radius Rc(v. = 0.4510),
‘the measurements in the angular range [0, ®° = 195°] do not com-

pletely specify the scattering object (i.., the disk of coverage in 2-D
Fourier space with radius R.(v. = 0.451) will not be completely
filled in.) As expected, the image reconstructed using the FBPP al-
gorithm is blurred, distorted and contains artifacts. The image recon-
structed using the SS-FBPP algorithm also appears blurred, but does
not contain any noticeable distortions or artifacts. This confirms our
assertion that, when the 2-D Fourier transform of a scattering object
() is not bandlimited to a disk of radius R.(v.), the SS-FBPP algo-
rithms that utilize the measurements corresponding to view angles in
[0, ®°] (where v and ®° are related by (6)) can reconstruct a low-pass
filtered version of a(¥) whose 2-D Fourier transform is bandlimited to
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Fig. 5. Images reconstructed using the FBPP and SS-FBPP algorithms for
various simulated data sets. See the text for a detailed description.
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the disk of radius Rc(vc). In this particular example, the 2-D Fourier
transform of the image reconstructed by use of the SS-FBPP algorithm
is bandlimited to a disk of radius Rc(.25/.45 vc).

VI. SUMMARY

We demonstrated previously [4], [5] that in 2-D DT employing
plane-wave or cylindrical-wave sources, one can exactly reconstruct
the scattering object from a minimal-scan data set acquired using view
angles only in [0, Gmin], where 7 < @min < 37/2 is a specified
function of the measurement geometry. In this study, we have demon-
strated that when measurements are available only for view angles in
[0, &°], where 7 < ®° < @min, a simple relationship exists between
the maximum scanning angle ®¢ and the image resolution when a
FBPP algorithm is employed to reconstruct the image. By properly
weighting the measurement data, a low-pass filtered approximation
of the scattering object that is free of conspicuous artifacts can be
obtained from the measurements corresponding to view angles in
[0, ®°]. When the scattering object is sufficiently bandlimited, it
can be exactly reconstructed. This observation is practically useful,
because it provides a convenient mechanism for regularizing the
severely ill-posed limited-view DT reconstruction problem; when the
maximum scanning angle $° is greater than 7, a stable reconstruction
can always be performed by sacrificing spatial resolution in the recon-
structed image. It can be demonstrated that the statistical properties
of the SS-FBPP algorithms are qualitatively similar to those of the
minimal-scan FBPP reconstruction algorithms investigated previously
[5]. In the limited-view radon transform inversion problem [9], an
analogous regularization mechanism does not exist and some sort of a
priori information regarding the object function is generally required
to effectively regularize the problem.

Because we have assumed a 2-D imaging geometry in this study, the
developed SS-FBPP reconstruction algorithms may be useful for appli-
cations in which out-of-plane scattering is not significant. In diffuse-
photon density wave tomography, the wavenumber is complex-valued
and the FDP theorem describes a mapping between the data function
and a set of complex-valued frequencies of the scattering object func-
tion’s Fourier transform. The extension of the concepts and techniques
introduced in this correspondence to the case where the wavenumber
is complex-valued and to the three-dimensional reconstruction problem
represent important topics for future research.
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